最初发表于以下网址:Millul,Jacopo;克里斯蒂安·克鲁德维格(Krudewig); Zana,Aureliano;广场,Sheila Dakhel; Puca,Emanuele;维拉,亚历山德拉; Neri,Dario;卡萨马利(Samuele)(2021)。免疫细胞因子和PD-1阻滞的免疫疗法增强了针对碳酸酐酶IX的小分子 - 药物结合物的抗癌活性。分子癌症治疗,20(3):512-522。doi:https://doi.org/10.1158/1535-7163.MCT-20-0361
1.临床化学和实验室医学研究所,德累斯顿工业大学医学院和卡尔古斯塔夫卡鲁斯大学医院,德国德累斯顿。2.内科 III 系,德累斯顿工业大学卡尔古斯塔夫卡鲁斯大学诊所,德国德累斯顿。3.内分泌学、糖尿病学和临床营养学系,苏黎世大学医院 (USZ) 和苏黎世大学 (UZH),瑞士苏黎世。4.放射性药物和化学生物学系,放射性药物癌症研究所,亥姆霍兹德累斯顿-罗森多夫中心 (HZDR),德国德累斯顿。5.维尔茨堡大学医院,内分泌和糖尿病科,德国维尔茨堡。6.慕尼黑路德维希马克西米利安大学大学医院医学 IV 系,德国慕尼黑。7.德累斯顿工业大学科学学院化学与食品化学系,德国德累斯顿。
b“ 1部门,巴斯克大学(UPV/EHU)计算机科学与人工智能,西班牙圣塞巴斯蒂安2 Donostia International Physics Center(DIPC),圣塞巴斯蒂安,西班牙3 3号Biomedicina de Sevilla研究所(IBIS),ROC \ xc2 \ xc2和部门dev> div> xc2 \ xc4 \ xc4 \ xb1a celular,celelulta,de Biolog \ xc2 \ xc2 \ xb4 \ xc4 \ xc4 \ xc4 \ xb1a,塞维利亚大学,西班牙塞维利亚大学,西班牙4个生物医学网络研究中心,神经疾病疾病(Ciberned)(ciberned),spain spintute,spain ridrid。 Gulbenkian de Ci \ XCB \ X86encia, Oeiras, Portugal 6 Biofisika Institute (CSIC-UPV/EHU), Leioa, Spain 7 Laboratoire of Optique et Biosciences, CNRS, Inserm, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France 8 MRC Laboratory of Molecular Biology,剑桥,英国9号英国剑桥大学的生理学,发展和神经科学的<美国波士顿学院的计算机科学界11。de biogenieria, universidad carlos III de Madrid, Madrid, Spain 12 Area de Bioingenieria, Instituto de Investigaci \ XC2 \ XB4ON Gregory Mara \ XCB \ XCB \ X9C \ XC2 \ XB4ON, Madrid, Spain 13 Ikerbasque, Basque Foundation for Science, Bilbao, Spain相应的作者“
总的来说,本文通过将硬性约束物理学知情的神经网络技术整合到能量最小化框架中,从而对计算微磁性做出了贡献。但是,开发的方法在磁静态方面具有进一步的适用性,用于其他物理和工程领域。短传记:塞巴斯蒂安·亚历山大·沙弗(Sebastian Alexander Schaffer)(生于1992年)是奥地利计算科学家。在Zeltweg完成高中后,他获得了Tu Wien的工程工程学士学位。他对计算机科学和数学数学的兴趣日益增长,使他攻读大学的计算科学硕士学位。wien。在他的主人论文中,由L. Exl和N. J. Mauser监督,他探索了用于预测磁化动态的机器学习方法,并产生了2个出版物。他继续担任计算科学领域的博士生,重点是微型磁性中的机器学习,而全职员工在WPI的一半,在Univ的研究平台上进行了一半。Wien,他在数学建模和应用机器学习中教书。致谢:本文的研究是由FWF(奥地利科学基金会)通过“减少微型磁性的订单方法(ROAM)的订单方法”(Grant-Doi:10.55776/p31140),“ data-roam”(Grant-doi:10.55776/pat76615923)和“ Denamm Insport” (Grant-Doi:10.55776/p35413)。感谢研究平台MMM和Wolfgang Pauli Institute(WPI)的进一步财务和行政支持。
共同创造是一种独特的艺术情境,人与计算机互动,对互动性、可操控性和个性化提出了挑战。我们提出了一种新的共同创作音乐创作方法,我们在参加“2021 年人工智能歌曲大赛”时采用了这种方法,这是一项涉及人工智能 (AI) 的国际音乐比赛。我们对人工智能创作方法进行了个性化,以适应作曲家的需求和期望。作曲家与不同人工智能方法之间的互动贯穿整个作曲过程,包括通过基于机器学习的人工智能的数据共享和基于规则的人工智能的知识共享来生成旋律、和弦进行、整体结构和纹理变化。我们描述了这些人工智能方法以及作曲家如何与它们互动:人工智能方法的个性化使作曲家能够在保持原有风格的同时探索新的音乐领域,人工智能音乐生成“听起来就像是专门为他生成的”。歌曲“The last moment before you fly”在本次比赛中排名第三,评委强调了这首歌的“个人感觉”。我们在这里讨论这些方法如何为使用人工智能和个性化的新共同创作方法开辟道路。
本课程重点介绍了设计在推动成功创新项目中的关键作用。对设计潜力的深刻了解是有价值的专业资产,使参与者能够有效地促进设计过程,而无需进行广泛的设计培训。您什么时候应该参与项目?在哪个阶段?成本,优势和限制是什么?通过回答这些问题,您将学会成为设计的促进者,这是桥接设计从业人员和创新项目的关键角色。您将获得动员设计师工具,了解其方法并应用它们以创新产品或服务的附加值的能力。通过在线准备和密集的面对面周的结合,学生将深入了解设计思维,用户驱动的创新和协作实践。该课程将以现实世界中的案例研究达到顶峰,挑战参与者将其作为创新项目领导者的知识。
免疫抑制分子程序性细胞死亡配体 1 (PD-L1) 已被证明在自身免疫、感染和癌症等病理中发挥作用。PD-L1 不仅在癌细胞上表达,而且在未转化宿主细胞上的表达也与癌症进展有关。小鼠系统中 PD-L1 缺陷的产生使我们能够专门研究 PD-L1 在生理过程和疾病中的作用。最通用且最易于使用的位点特异性基因编辑工具之一是 CRISPR/Cas9 系统,它基于 RNA 引导的核酸酶系统。与其前身锌指核酸酶或转录激活因子样效应核酸酶 (TALEN) 类似,CRISPR/Cas9 催化双链 DNA 断裂,这可能导致由于非同源末端连接 (NHEJ) 的随机核苷酸插入或缺失而导致的移码突变。此外,尽管不太常见,但 CRISPR/Cas9 可以在存在合适模板的情况下通过同源定向修复 (HDR) 导致插入确定的序列。在这里,我们描述了使用 CRISPR/Cas9 在小鼠 C57BL/6 背景下敲除 PD-L1 的方案。外显子 3 的靶向结合 HindIII 限制位点的插入会导致过早终止密码子和功能丧失表型。我们描述了靶向策略以及创始者筛选、基因分型和表型。与基于 NHEJ 的策略相比,所提出的方法可产生具有与 NHEJ 相当的效率和时间线的确定终止密码子,生成方便的创始者筛选和基因分型选项,并且可以快速适应其他目标。
关于我 我是一个好奇的人,总是在寻找新的体验,这些体验能为我提供不同的生活视角。我有时很害羞和严格,这就是为什么我总是感到有突破极限、开阔视野的冲动。自从我 16 岁第一次出国经历以来,我就知道我会喜欢收拾行李再次出国。我立刻明白,这种经历是无价的,它不仅能让人们学会如何更轻松地面对日常问题,还能让人们重新与自己建立联系。 关于我的 UNIPD 经历 你最喜欢这个学位课程的哪一点?你会推荐它吗? 帕多瓦大学的医学生物技术课程真正推动学生发展批判性思维,这与严谨的方法论一起,是任何愿意将学术研究作为职业的人都需要的属性。此外,它还提供广泛的知识,整合了病毒学、蛋白质组学、生物信息学、遗传学、病理学、基因治疗、基因组编辑、干细胞生物学和再生医学。你们的双学位课程的主要特点是什么? 该课程可以让学生获得额外的实践经验,立即接触学术研究工作环境并促进创新思维。在国外学习期间,我有机会加入两个实验室进行短期实习,每个实验室为期一个月,涉及两个完全不同的领域:分子病毒学和神经肿瘤学。这帮助我明确了我希望进一步专攻的领域。 参加这类课程(学术和私人)的附加价值是什么? 参加 UNIPD 的医学生物技术和乌尔姆大学的分子医学双学位课程丰富了我的学术和职业旅程。它提供了接触尖端研究设施和不同科学方法的机会。这段经历帮助我与国际研究人员和机构建立联系,提升了我的职业机会。就个人而言,在两个不同的文化和学术环境中学习不仅将我的社交网络扩展到国际水平,还提高了我的适应能力、解决问题的能力和软技能。它还让我提高了英语沟通能力并学习了一门新语言(德语)。
Satyendra Nath Bose 国家基础科学中心 (SNBNCBS),JD 区,Sector – III,Salt Lake,加尔各答 – 700106(成立于 1986 年,拥有 15 英亩的绿色校园)是一家由印度政府科技部资助的自治机构。该中心目前拥有 32 多名教职员工、37 多名博士后研究员/科学家和约 170 名学生,在基础科学的不同重点领域开展研究活动。它在物理、化学和数学科学的不同领域开展研究活动(理论、计算和实验)。近年来,该中心投入大量资金建立新的实验研究和计算设施(访问我们的网站:https://newweb.bose.res.in)。该中心开设了硕士研究生和综合博士研究生课程。
