创新:描述了深度神经网络 (DNN) 因训练不完善而产生的脆弱性;引入了新型算法来制作对抗样本,并展示了对抗样本的跨模型可转移性;开发了一种防御机制——蒸馏——以降低对抗样本的有效性。
未来的量子网络将具有配备多个量子存储器的节点,从而允许多路复用 14 和纠缠蒸馏策略,以提高交付率并减少端到端 15 纠缠分发的等待时间。在这项工作中,我们引入了用于多路复用量子中继器 16 链的准局部策略。在完全局部策略中,节点仅根据对自身状态的了解做出决策。在我们的 17 准局部策略中,节点增加了对中继器链状态的了解,但不一定是 18 完整的全局知识。我们的策略利用了这样的观察结果:对于节点必须做出的大多数决策 19,它们只需要掌握有关它们所属链的连接区域的信息,而不是整个 20 链。通过这种方式,我们不仅获得了优于局部策略的性能,而且还降低了全局知识策略固有的经典 21 通信 (CC) 成本。我们的策略在实际相关的参数范围内也优于众所周知的、被广泛研究的嵌套净化和加倍交换策略。我们还仔细研究了纠缠蒸馏的作用。通过分析和数值结果,我们确定了蒸馏有意义且有用的参数范围。在这些范围内,我们还解决了以下问题:“我们应该先蒸馏再交换,还是反之亦然?”最后,为了提供进一步的实用指导,我们提出了一种基于多路复用的中继器链的实验实现,并通过实验演示了关键元素,即高维双光子频率梳。然后,我们通过对两个具体内存平台(即稀土离子和金刚石空位)的模拟结果,评估了我们基于多路复用的策略在这种真实网络中的预期性能。
痤疮是与微生物感染相关的常见皮肤问题,需要抗微生物剂进行治疗。含有精油作为抗微生物剂的草药无疑是一种增长的趋势。据报道,丁香油具有针对痤疮的抗微生物活性,引起微生物,例如痤疮,表皮葡萄球菌,金黄色葡萄球菌和白色念珠菌。因此,本研究的目的是通过使用丁香油来制定开发的antiacne craem。通过蒸汽蒸馏方法提取了上述型油,并通过蒸汽蒸馏方法提取了印度标准指南BIS指南和抗菌活性的抗菌活性的抗微生物抗微生物的抗微生物的官僚机构。也是所有抗acne奶油制剂,其中受试者稳定性研究和对人类志愿者的主观评估。结果表明,含有丁香油的抗痤疮霜(F3)对可容纳痤疮的微生物有效。丁香油是一种有效的抗痤疮剂,因此可以证明将其纳入抗痤疮制备中。
随着解码步骤的数量增加,迭代非自回旋变压器的计算益处减小。作为一种补救措施,我们介绍了DI仍然是Untiple S Teps(Dims),这是一种简单而有效的蒸馏技术,以减少达到一定的翻译质量所需步骤的数量。截止的模型享有早期迭代的计算益处,同时从几个迭代步骤中保留了增强性。暗示着两个模型,即学生和老师。在多个解码步骤后,在老师通过缓慢移动的平均值跟随学生的同时,对学生进行了优化,以预测老师的输出。移动平均线使教师的知识更新,并提高了老师提供的标签的质量。在推断期间,学生用于翻译,并且不添加其他构成。我们验证了DIMS对在WMT'14 DE-EN的蒸馏和原始验证上获得7.8和12.9 BLEU点改进的各种模型的有效性。此工作的完整代码可在此处提供:https://github.com/ layer6ai-labs/dims。
海水淡化和先进水处理摘要水资源短缺是一个全球性挑战,对人类健康、粮食安全和经济发展构成重大威胁。海水淡化和先进的水处理技术通过将海水和纯净水转化为适合各种用途的淡水,已成为缓解水资源短缺的关键解决方案。海水淡化方法,包括反渗透 (RO)、多级闪蒸 (MSF) 蒸馏、多效蒸馏 (MED) 和电渗析 (ED),可通过各种过程将盐水转化为淡水。先进的水处理技术,例如高级氧化工艺 (AOP)、膜过滤、活性炭过滤和生物处理,可进一步净化来自各种来源的水,包括纯净水和废水。这些技术在满足日益增长的淡水需求和改善水质方面发挥着至关重要的作用。本章概述了海水淡化和先进水处理的原理、方法和应用,强调了它们在解决水资源短缺和促进可持续发展方面的重要性。
许多量子算法具有指数运行时间优势,而其经典算法则是大量的量子和量子门。在科学或工业上有趣的量表上进行了包括估计具有数百个旋转轨道和电子的分子的能量水平[13,26],并考虑了具有数千个位的RSA整数[8]。 解决这些问题至少需要许多量子位来编码输入,在这些输入上,将数十亿至数万亿个基本量子门应用于这些输入上。 在大规模上,嘈杂的物理硬件上的量子计算需要量子校正代码中的逻辑量子位上容易且易于故障。 尽管可以在许多校正代码上在横向上实现,因此可以在横向上实现,因此可以通过非电压门(通常是t门)增强它们,以实现它们,以实现它们,以实现t门,以实现通用量子计算。 作为t门的同时持续实现[28],通过诸如魔术状态蒸馏[2]或规格固定[20]的诸如魔术状态蒸馏之类的技术含量[28]实现了耐断层的t门,这些技术的成本更高。 因此,T门的总数是理解易于断层量子算法的现实成本的好启发式。 优化任意量子算法分解为最少数量的T门的分解是包括估计具有数百个旋转轨道和电子的分子的能量水平[13,26],并考虑了具有数千个位的RSA整数[8]。解决这些问题至少需要许多量子位来编码输入,在这些输入上,将数十亿至数万亿个基本量子门应用于这些输入上。在大规模上,嘈杂的物理硬件上的量子计算需要量子校正代码中的逻辑量子位上容易且易于故障。尽管可以在许多校正代码上在横向上实现,因此可以在横向上实现,因此可以通过非电压门(通常是t门)增强它们,以实现它们,以实现它们,以实现t门,以实现通用量子计算。作为t门的同时持续实现[28],通过诸如魔术状态蒸馏[2]或规格固定[20]的诸如魔术状态蒸馏之类的技术含量[28]实现了耐断层的t门,这些技术的成本更高。因此,T门的总数是理解易于断层量子算法的现实成本的好启发式。优化任意量子算法分解为最少数量的T门的分解是
Liu, Y., Wang, J., Xiao, Z., Liu, L., Li, D., Li, X., Yin, H. 和 He, T. (2020) 具有波纹图案的超疏水聚二氟乙烯膜在直接接触膜蒸馏中的各向异性性能。脱盐,481,114363。
摘要 - 准确的轨迹预测对于安全有效的自主驾驶至关重要,但是处理部分观察的驾驶提出了重大挑战。为了解决这个问题,我们提出了一个新颖的轨迹预测框架,称为拥挤的城市道路场景,称为部分观测预测(POP)。该框架由两个关键阶段组成:自我监督学习(SSL)和特征蒸馏。POP首先采用SLL来帮助模型学习重建历史记录表示形式,然后将功能蒸馏作为微调任务来从教师模型中转移知识,该教师模型已通过完整的观察进行了预先训练,该模型只有很少的观察结果。POP取得了与开环实验中最高表现方法的可比结果,并且在包括安全指标在内的闭环模拟中优于基线方法。定性结果说明了POP在提供合理和安全的轨迹预测中的优越性。演示视频和代码可在https://chantss.github.io/pop/上找到。
华盛顿大学核理论研究所,西雅图,华盛顿州 98195-1550,美国(日期:2021 年 2 月 1 日 - 9:54)摘要无质量无相互作用标量场理论的两个不相连区域之间可蒸馏纠缠的上限具有由几何衰减常数定义的指数衰减。当用空间晶格在短距离内调节时,这种纠缠会突然消失在无量纲分离之外,从而定义负球体。在两个空间维度中,我们通过一系列晶格计算确定一对圆盘之间的几何衰减常数以及负球体向连续体的增长。与三维空间量子场论建立联系,假设此类量子信息尺度也出现在量子色动力学 (QCD) 中,则在描述核子和原子核低能动力学的有效场论中可能会出现一种新的相对尺度。我们重点介绍了可蒸馏纠缠结构对有效场论、格点 QCD 计算和未来量子模拟的潜在影响。
华盛顿大学核理论研究所,华盛顿州西雅图 98195-1550,美国(日期:2021 年 2 月 10 日 - 21:58)摘要无质量无相互作用标量场理论中两个不相连区域之间可蒸馏纠缠的上限具有由几何衰减常数定义的指数衰减。当用空间晶格在短距离内调节时,这种纠缠会突然消失在无量纲分离之外,从而定义负球体。在两个空间维度中,我们通过一系列晶格计算确定一对圆盘之间的几何衰减常数以及负球体向连续体的增长。与三维空间量子场论建立联系,假设此类量子信息尺度也出现在量子色动力学 (QCD) 中,则在描述核子和原子核低能动力学的有效场论中可能会出现一种新的相对尺度。我们重点介绍了可蒸馏纠缠结构对有效场论、格点 QCD 计算和未来量子模拟的潜在影响。
