一系列卡宾-金-乙炔配合物 [(BiCAAC)AuCC] n C 6 H 5 − n ( n = 1,Au1;n = 2,Au2;n = 3,Au3;BiCAAC = 双环(烷基)(氨基)卡宾) 已被高产率合成。化合物 Au1–Au3 呈现深蓝色至蓝绿色磷光,在所有介质中量子产率高达 43%。金配合物 Au1–Au3 中 (BiCAAC)Au 部分的增加会增加紫外可见光谱中的消光系数和更强的振子强度系数,理论计算支持这一点。发光辐射速率随着 (BiCAAC)Au 部分的增加而降低。时间相关密度泛函理论研究支持磷光的电荷转移性质,这是因为单重态(S 1 )和三重态(T 1 )之间的能隙很大(0.5–0.6 eV)。瞬态发光研究揭示了非结构化紫外瞬时荧光和 428 nm 振动分辨长寿命磷光的存在。有机发光二极管 (OLED) 采用物理气相沉积法制成,以 2,8-双(二苯基磷酰基)二苯并[b,d]呋喃 (PPF) 作为主体材料,与复合物 Au1 反应。在 405 nm 处观察到近紫外电致发光,器件效率为 1%,同时在 10 尼特的实际亮度下 OLED 器件寿命 LT 50 长达 20 分钟,表明一类非常有前景的材料可用于开发稳定的紫外 OLED。
一般范围:单光子源是量子通信和计算框架中的关键组成部分。特别是,它们是由量子物理定律本质上保护的秘密解密密钥所必需的。我们的小组开发了嵌入在自下而上的核心壳ZnSE纳米线(NWS)中的CDSE量子点(QD)的生长和光学研究,所有这些都由分子束外延(MBE)生长。我们已经表明,这些QD能够发射到室温至室温的单个光子。此外,它们在蓝绿色光谱范围内的排放尤其适合自由空间和水下通信。主题:主实习旨在控制这些CDSE/ZNSE NW-QD的增长,以提高其作为单光子发射器的效率。这意味着:(i)优化核壳型纳米线异质结构的生长,以增强发射量子产率,(ii)获得对QD形状和纯度的控制以允许纠缠光子的发射。实习结合了MBE的生长,结构表征(扫描电子显微镜)以及光学表征。它提供了探索广泛的基本物理现象(增长机制,光学特性等)在纳米尺度上,同时为量子通信和量子信息处理领域必不可少的设备的开发做出了贡献。环境与合作:我们的小组“纳米物理学和半导体”是一个联合CEA/CNRS团队,实习生将与我们小组的CEA-IRIG和CNRS-NEEL的研究人员进行紧密互动。必需的技能:纳米科学,材料科学,半导体物理学,对实验和合作工作感兴趣。开始日期:2024年2月或2024年3月:4-5个月实验室:CEA-GRENOBLE/PHELIQS/NPSC:www.pheliqs.fr/pages/npsc/presentation.aspx Contact.aspx联系人:通过电子邮件发送您的申请(包括CV)至:
此通函提供了维多利亚州有害藻类布鲁姆协调的准备和响应安排的指导。蓝绿色藻类(BGA)或蓝细菌是光合细菌。它们是大多数水生环境的自然组成部分,在溪流,湖泊,河口和大海中发现。水体中的大量BGA水平会影响自然生态系统,并可能影响人类健康。某些BGA可以产生化学化合物,可以通过引起变色以及发霉的气味和味道来污染饮用水供应。更重要的是,某些物种会产生毒素,如果被食用,吸入或与皮肤接触,可能会对人,动物,鸟类和牲畜产生严重的健康结果。由于环境条件变得有利,通常在温暖的月份中,藻类数量会迅速增加,从而导致开花。开花可能会使休闲水不吸引人,并且可能不安全,例如游泳和钓鱼等活动。虽然藻华在温暖的月份更为普遍,但条件有利,但可以全年发生盛开,而无需警告。藻华需要以监测和与公众进行监控和沟通的形式迅速反应,以最大程度地减少其对人类,动物,鸟类,牲畜和农作物的影响和风险。藻华应通过维多利亚州所有相关利益相关者之间的合作来管理。可以提供一个单独的文档,标题为“藻华响应计划”,其中包括维多利亚时代安排的详细信息,以响应藻华。在2级区域开花的情况下,该计划将使用。该计划可通过紧急管理 - 普通操作图片(EM -COP)https://cop.em.vic.gov.au和Algal Blooms模块https://www.floodzoom.vic.gov.gov.au
摘要:种群下降和灭绝通常是由多种压力源驱动的。自公元1500年以来,预测的鸟类的全球灭绝率估计比长期背景平均水平至少高出80倍。pāteke/棕色蓝绿色(Anas Chlorotis)是新西兰Aotearoa的威胁性水禽,目前的人口为c。 2500,分布在两个残余人群和少数重新引入地点。自人类到来以来,帕特克的下降是由于栖息地的丧失和破碎,捕食和其他人为相互作用而导致的。两个残余人群之一位于Aotea大屏障岛上,自1980年代以来一直在下降。我们使用了种群生存能力分析和物种分布建模的组合来更好地理解(1)AOTEA下降的驱动因素,(2)最有可能降低灭绝风险的管理干预措施以及(3)Pāteke在Aotearoa跨Aotearoa的史前分布。我们的模型通过了来自AOTEA的七年密集监控数据以及全国分布的化石记录的结合。人口生存能力分析结果表明,在接下来的100年中,AOTEA上的Pāteke人口灭绝的可能性为46%,有99%的机会降至50个人的丰度低于50个人。管理应主要关注成人的生命阶段,因为保护这个阶段导致人口增长率最大。物种分布建模结果表明,从历史上看,帕特克在沿海的大部分Aotearoa中都存在。正如人口下降通常是多种压力源的结果一样,通常需要进行多种干预措施才能停止灭绝。对于Pāteke,这将意味着控制多种哺乳动物捕食者物种,改善栖息地质量,并在其前范围内重新建立人口。对于Pāteke,这将意味着控制多种哺乳动物捕食者物种,改善栖息地质量,并在其前范围内重新建立人口。
藻类品种包括海藻,池塘浮渣和海带都来自同一个家庭。这些生物的植物样特征如叶绿体,可以进行光合作用的LIK植物。有些藻类还鞭毛和中心藻,在饲料习惯方面,它们与动物更相似。藻类范围从微小的单细胞生物到大型多细胞类型,它们生活在各种环境中,包括盐水,淡水,湿土或潮湿的岩石。较大的藻类物种通常被称为简单的水生植物。硅藻是盐水环境中最丰富的浮游生物类型,人数超过金棕色藻类。没有细胞壁,硅藻具有称为浮雕的二氧化硅壳,其形状和结构取决于物种。金棕色藻类虽然不太常见,但被称为纳米膨胀,仅由50微米的细胞组成。消防藻类,也称为鞭毛藻,是单细胞的,当它们大量盛开时会引起红潮,在海洋中以红色的色调出现。某些吡咯烷物种是生物发光的,导致水在夜间发光。鞭毛藻是有毒的,会产生可破坏人和其他生物体肌肉功能的神经毒素。与鞭毛藻类似的Cryptomonads也可能会产生有害的藻华,将水变深褐色或红色。netrium desmid是在淡水和盐水环境中发现的单细胞绿藻类的顺序,在具有对称结构的长丝状菌落中生长。绿藻主要居住在淡水中,但也可以在海洋中找到。F.E.它们具有由纤维素制成的细胞壁,并含有叶绿体,使它们可以进行光合作用。多细胞种类的绿藻形成菌落,从四个细胞到几千个细胞。用于繁殖,一些物种与一个鞭毛一起游泳的非运动型植物孢子或Zoospores。绿藻类的类型包括海莴苣,马毛藻和死者的手指。红藻通常在热带海洋位置发现,生长在珊瑚礁等实心表面或附着在其他藻类上。它们的细胞壁由纤维素和各种碳水化合物组成。红藻通过产生由水流携带的单孢子直至发芽的单孢子。他们还经历了有性繁殖和几代人的交替。不同种类的红藻形成不同的海藻类型,例如以其优雅的外观而闻名的plumaria elegans。海带是在水下海带森林中发现的一种棕色藻类。棕色藻类是最大的藻类类型之一,由在海洋环境中发现的各种海藻和海带组成。它们具有分化的组织,包括锚固器官,浮力的空气口袋,茎,光合器官以及产生孢子和配子的生殖组织。棕色藻类的生命周期涉及世代的交替。一些棕色藻类的例子包括萨尔加苏姆杂草,岩藻和巨型海带,它们的长度最高可达100米。黄绿色藻类是藻类的最少种类的类型,只有几百种,它们是单细胞生物,具有由纤维素和二氧化硅制成的细胞壁。藻类是具有类似于植物的特征的生物。它们最常见于水生环境中,藻类有七种主要类型,每个藻类具有不同的特征。绿藻通常生活在淡水中,而红绿色藻类则生活在新鲜和盐水环境中。本文解释了藻类的不同类型,包括它们的独特特征和栖息地。它还讨论了藻类作为包含植物样特征并具有光合作用的生物的重要性。藻类的大小差异很大,范围从单细胞到大型多细胞物种,并且可以在不同的水生环境以及潮湿的表面上找到。与较高的植物不同,它们没有根,茎,叶或花朵,并且缺乏血管组织。藻类作为主要生产者在水生生态系统中起着至关重要的作用,它是盐水虾和磷虾等各种海洋生物的食物来源。他们通过性和无性恋方法繁殖,一些物种经历了世代的交替。繁殖方法通常取决于温度,盐度和营养供应性等环境因素。Fritsch分类藻类基于色素沉着,thallus结构,储备食品,鞭毛和繁殖方式。藻类的两种主要类型是叶绿素(绿藻)和Phaeophyceae(棕色藻类)。叶绿素科包括约7,000种,主要在具有海洋形式的淡水环境中发现。他们通过性,无性和营养方法繁殖。它们表现出各种结构,例如单细胞,殖民地,丝状和管状形式。绿藻由于含有不同颜料的叶绿体而能够进行光合作用。它们的颜色范围从黄绿色到深绿色,它们具有线粒体,带有平坦的Cristae,中央液泡和由纤维素和果胶制成的细胞壁。Phaeophyceae由大约2,000种生活在海洋环境中。它们的特征是由于高水平的岩甘氨酸而引起的棕色着色,这是诸如Chl-A,C,Carotenes和Xanthophylls之类的光合色素的另一种存在。他们的植物体被分为固定的锚固,长期存在的stipe,lamina或frond可能是一年。海带或海藻在这一组中是显着的较大形式,其中一些物种达到了相当大的尺寸,例如大环(30-60m),使其成为最大的海洋植物。这些藻类包含由纤维素和藻类等多糖制成的细胞壁,纤维素和藻类酸是一种复杂的多糖,有助于保护它们免受各种环境因素的侵害。棕色藻类包含锚定器官,茎,光合器官以及发展孢子和配子的生殖组织。,他们以拉米那肽和甘露醇的形式保留食物,如在拉米那尼亚,大环,内囊等物种等物种中所见。红色藻类具有植物蛋白酶和植物素色素,使它们的颜色显得红色,尤其是在更深的水域中。这些生物可以由于这些色素而吸收蓝绿色的光谱,从而使它们在更大的深度繁殖。一个例子是液泡。大多数红藻是光自人营养的,但有一些例外,例如Harveyella,它生活在其他红藻类上。它们的细胞壁由纤维素,果胶和硫酸化植物胶体(如琼脂)组成。红藻中的thallus组织可以从单细胞到类似蕾丝的结构不等。这些生物可以保留食物为佛罗里达淀粉,在Gonyostomum和Chattonella等物种中发现。黄绿色藻类是最少的多产量,只有450-650种。它们主要是单细胞的,具有纤维素 - 硅细胞壁,用于运动的鞭毛以及缺乏某些色素的叶绿体。Xanthophyceae通常形成细胞的小菌落,并具有用于运动的鞭毛。他们将食物保留为脂肪,主要是在具有盐水适应的淡水环境中发现的。他们的性繁殖很少见。菊科是单细胞或殖民地鞭毛物,包括各种类型的球形,衣壳,丝状,丝状,变形虫,质子和实质形式。大约12,000种菊科,主要是居住在淡水环境中,其中一些在盐水栖息地中发现。这些微生物的特征在于诸如叶绿素A,P-胡萝卜素和叶黄素等色素。黄金藻类以脂肪的形式存储能量,很少经历有性繁殖,并产生称为囊肿的专门静息细胞。运动形式具有一两个不同类型的鞭毛:金属丝或鞭打。chrysocapsa,lagynion,ochromonas,chrysamoeba是金藻的例子。例子包括气旋,thalassiosira,Navicula和Nitzschia。接下来,芽孢杆菌科(硅藻)由约12,000至15,000种。这些微生物在显微镜下显示为鼓形细胞,并带有一些形成的链。硅藻以脂肪的形式存储能量,并经历广泛的有性繁殖。它们具有由果胶和二氧化硅组成的硅化细胞壁,存在于淡水,海洋和陆地环境中。隐藻科是单细胞鞭毛形式,约有200种。在光学显微镜下,它们以红色或红色颜色的逗号形细胞出现。Cryptophyceae以淀粉的形式存储能量,具有由纤维素组成的细胞壁,并具有两个不等的鞭毛。罕见的异恋性繁殖发生在这些生物体中,居住在淡水和海洋环境中。例子包括plagioselmis,falcomonas,rhinomonas,teleaulax和chilomonas。Dinophyceae是大约200种的运动单细胞生物。他们的主要色素包括叶绿素a和c,β-胡萝卜素和叶丁香。罕见的异恋性繁殖发生在这些生物中,这些生物主要居住在海洋环境中,但有些存在于淡水中。Dinophyceae以淀粉或脂肪的形式存储能量。例子包括Alexandrium,Dinophysis,Gymnodinium,Peridinium,Polykrikos,Noctiluca,Ceratium和Gonyaulax。叶绿素科是具有鲜绿色色谱和过量叶丁香的单细胞生物。他们以脂肪的形式存储能量,并具有双足动动物形式。这些微生物仅居住在淡水环境中。euglenineae是具有光合色素的运动单细胞或殖民地生物,例如叶绿素a和b,β-胡萝卜素和木蛋黄酱。他们以淀粉或脂肪的形式存储能量,并具有类似于微观动物的裸纤毛生殖器官。有性繁殖尚未得到这些生物的明确证明。尤格伦氨酸中不存在细胞壁,其中一种或多种金属丝类型。一个例子是Euglena。最后,蓝藻科或粘菌科(蓝绿色藻类)由单细胞,殖民地或多细胞体组成,具有原核核和双膜性线粒体和叶绿体。这些微生物居住在各种环境中,并具有多种特征。颜料在蓝藻科的独特蓝色中起着至关重要的作用,植物蛋白蛋白是主要的贡献者。这组藻类缺乏运动阶段,而以氰基雄雄或粘菌糖淀粉的形式存储食物。它们的细胞壁由果胶或纤维素组成。在许多蓝绿色藻类物种中常见的独特特征,例如“假”分支和杂环。在蓝菌科中没有有性繁殖,无处不在,到处都可以找到。这些生物的例子包括Nostoc,振荡器,Anabaena,Lyngbya和Plectonema。藻类是主要生产者,利用叶绿素A和B进行光合作用,并且具有确定其颜色的各种色素。藻类通常被错误地考虑到植物或生物。然而,某些物种可以产生有毒的花朵,例如红潮,蓝绿色藻类和蓝细菌,对人类健康,水生生态系统和经济构成重大威胁。藻类有多种类型的藻类,包括绿藻(绿藻),Phaeophyceae(棕色藻类),rohodophyceae(红藻类),Xanthophyceae(黄绿色藻类)和氰基藻科和粘液菌科或粘粒细菌(蓝绿色藻类)。这些生物可以大致分为三个大藻类:棕色藻类,绿藻和红藻。
已用于机械响应变色聚合物[8–10],而电子转移机制已被用于制造电致发光机器人皮肤。[11] 具有应力可调结构色的软材料也已开发出来,使用水凝胶基质中的定向纳米片或有机双层、聚合物渗透的光子晶体和液晶系统。[4,5,12] 尽管概念验证材料和设备已经成功展示,但目前这些材料在自主和节能的块体设备中的利用受到以下因素的阻碍:诱导颜色变化所需的高能量输入、速度慢、不可逆性以及扩大合成和制造工艺的挑战。与人造设备相比,鱼、鱿鱼和变色龙等动物已经进化出优雅、节能的细胞内结构,可以动态控制颜色,从而进行交流、警告、保护和伪装。 [13–17] 其中一些动物的彩虹色是由一种名为虹细胞的特殊细胞内的层状纳米结构反射光线的建设性干涉产生的。颜色和亮度的变化是通过细胞介导对这些反射结构的层状间距和方向的操控而产生的。例如,霓虹灯鱼只需使用所谓的百叶窗机制倾斜高反射率的鸟嘌呤板,就能将颜色从蓝绿色(≈ 490 纳米)变为靛蓝色(≈ 400 纳米)(图 1 A、B 和电影 S1,支持信息)。[13] 在电刺激虹细胞的驱动下,颜色变化是可逆的,而且速度超快。由于该机制依靠入射光作为动力源,并且反射光线通过建设性干涉得到加强,因此这些动物可以用最少的能量输入产生强烈、动态可调的颜色。人们还广泛探索了堆叠的薄片形式的层状结构,以便对合成材料的性质和功能进行结构控制。受软体动物壳结构的启发,粘土和无机薄片排列成珍珠层的砖和砂浆结构,可用于显著提高聚合物基复合材料的刚度和断裂韧性。[18–22] 除了机械性能外,人们还开发了具有精心设计的薄片取向的结构材料,以提高锂离子电池石墨阳极的充电速率[23],或实现受植物启发的变形结构[24]和软机器人的形状变化。[25] 与许多可以实现的组装过程相比,
本田间指南是对迷人的地衣世界的介绍,你们中的许多人可能已经在树枝上被视为在岩石上的五颜六色的飞溅,但不知道它们是什么。对我们大多数人来说,我们的注意力和钦佩都吸引了赛普拉斯山公园(Cypress Hills Park)的许多五颜六色的植物。但是地衣仍然有些谜。尽管有些生动的颜色吸引了我们的注意力,但缺少花朵,叶子和根或任何形式的可见水果。地衣能够在我们看来是不寻常的地方生存,例如干针织罩,树皮,裸露的树枝或树枝和开放岩石(砾岩)。尽管地衣生长的一些分支和树枝死亡,但这些分支和树枝并未被地衣杀死。lichens不喜欢其他生物的竞争,因为它们剥夺了所需的阳光和水分来获取营养。一旦通过自然手段消除竞争,地衣将迅速殖民这些裸露的区域。尽管本指南是在赛普拉斯山公园(Cypress Hills Park)使用的,但它在北方森林中也很有用,正如该指南中讨论的许多地衣也可以在那里找到。原因是公园中的某些植被元素属于温带以及西部山地地理分布模式。(brodo at al。2001),发生在萨斯喀彻温省的所有生态区和生态中。14种地衣在字母内由属排列,每个地衣均具有授权。包括已知的通用名称和同义词。文本大多是非技术措辞的非技术性措辞。词汇表中列出了技术等效物。有关于该物种在公园内的地方的注释;发生的;地理分布;生长形式的类型;详细描述;以及带有彩色照片和插图的插图,以带来某些物种的重要细节,这将有助于识别田间的地衣。评论部分提供了有关相似物种的信息;第一民族的使用;植物传说和植物偏差(Johnson等,1995年)。希望本指南对博物学家和任何有兴趣更多有关地衣及其在该公园各种生态系统的重要性有兴趣的人有帮助。生长形式地衣显示出许多增长形式。这些被识别为叶状(叶状),蔬菜糖(浓密或直立的茎,许多茎,吊坠或形成垫子)和地壳(在它们生长的表面上形成地壳)。树皮和岩石经常显示这种形式。另一种生长形式是鳞状(带有许多鳞片状的叶),经常被克拉多尼亚(Cladonia)物种看到。繁殖,因为地衣没有花和产生种子,那么它们如何繁殖呢?这不是一个容易回答的问题,因为地衣会形成两个或多个组成部分,真菌和绿色或蓝绿色藻类(蓝细菌)之间的关系,并且有性繁殖变得有些复杂。藻类和真菌可以单独繁殖,但是要形成可识别的地衣,它们必须齐聚一堂,也就是说,可行的真菌孢子必须与适当的藻类孢子团结起来,以发起新的苔藓,以提供新的地衣,以提供正确的子宫和栖息地。
4。地衣:-4.1类型; 4.2繁殖; 4.3经济重要性。4.4地衣在植物继承和污染监测中的作用。5。经济和药用重要性:-5.1蘑菇 - 印度属品种的食品价值和二项式 - agaricus,calocybe,pleurotus和volvariella; 5.2真菌来源和用途 - SCP,贝克酵母,乙醇,柠檬酸,色氨酸, - 淀粉酶,核黄素,Griseofulvin,nystatin和Cyclosporin; 5.3医学真菌学 - 结局的定义;在菌丝中用作“环虫”或滴虫病和念珠菌病的因果生物和抗生素。微生物学1。微生物和微生物学研究 - 主要概念; 1.1原核生物(原核生物)和真核生物的微生物和王国的分类(G. E. Murray 1968&R。H. Whittaker 1969)[初步想法]; 1.2现代分类,签名密码子,三个领域的分类概念(Carl R. Woese 1978)和通用系统发育树的概念(Norman R. Pace 1997)[仅基本概念]。2。古细菌:-2.1特征(简短概述); 2.2细胞壁; 2.3发生。3。4。病毒:-4.1病毒和植物病毒的类型; 4.2植物病毒的传播; 4.3 TMV - 理化特征及其繁殖模式; 4.4 T 4噬菌体 - 结构,感染和裂解周期; 4.5 lambda()噬菌体 - 溶酶体的机制和意义; 4.6病毒和王室。5。细菌:-3.1一般特征; 3.2细菌生长 - 二进制裂变,指数生长和生长曲线(具有单个碳源的封闭系统中的一般模式 - 单相)3.3化学本质,糖卵形,粘液层,果皮层,鞭毛,pili,pili和fimbriae的化学性质,超结构和功能; 3.4细胞壁 - 革兰氏阳性和革兰氏阴性细菌之间的化学性质和差异; 3.5细菌基因组和质粒; 3.6遗传重组 - 转化[DNA摄取的一般过程,自然和诱导的能力和机制],结合['F'因子,F +和HFR男性以及染色体动员]和转导[一般概念和适用性]; 3.7细菌多样性 - 以下组的一般概念和系统位置: - 光合细菌(蓝绿色,紫色和绿色细菌,氧合和氧合群的概念),衣原体,氮固定细菌(符号和非肌生物)(符号和非肌生元),结实和结构细菌,又有细菌,又有元素,且异常,且群体,以及构成的,构成的,构成的,构成的,构成的,构成的,以及构造的群体,及其群体和群体,构造和群体及其群体,放线菌科。应用细菌学:-5.1来源(仅名称)和用途 - 杆菌蛋白,新霉素,链霉素,氯霉素,两性霉素B,淀粉酶,纤维酶,纤维素酶,蛋白酶,赖氨酸,赖氨酸和右旋烷; 5.2生物肥料,生物气体和生物农药的生产中使用的细菌(仅); 5.3霍乱,细菌痢疾,伤寒,白喉,结核病,结核病,瘟疫和肺炎的因果生物(只有名称)。
摘要:佛罗里达州面临着越来越多的挑战,这是由于经常性和新颖的有害藻华(HABS)所引起的。关键挑战包括预测,跟踪,管理和缓解有害的花朵。最初的回应是1997年创建了佛罗里达有害藻华特遣队(HABTF),该工作组于1999年根据佛罗里达州法规被指控,以“确定研究和监测优先级,控制和缓解策略,并向佛罗里达鱼类和野生动物保护委员会(FWC)提出建议,并提出建议。响应于2017年 - 2019年的Karenia Brevis Bloom,HABTF被重新召集。添加了全州框架的其他组成部分,包括FWC红潮研究中心(CRTR),由新法规资助的缓解和技术开发计划以及蓝绿色藻类工作组。并发且经常互动的工作导致了25个从HABTF建议开发的项目,并通过HABTF赠款和CRTR资助;佛罗里达州HAB观察网络的研讨会和HABTF会议将HAB专家汇总为州法规概述的专家;以及针对沟通,公共卫生和经理响应的工作组成立。当前HABTF的产品包括提供建议并总结进度的共识文件(2020年,2021年和准备中),这是佛罗里达州HABS公共卫生响应的最新资源指南,对盛开的机构响应,对盛开的响应,增强的现场观察和模型的增强,并通过社会科学研究和库creations的社会发展和风险工具引导的,并进行了许多公共成员的沟通和风险。HABTF继续评估现有方法和知识,在我们的努力和理解中查明差距,并通过评估其利益和可行性来填补这些差距的优先策略和行动组合。演讲者:佛罗里达州鱼类和野生动物保护委员会,鱼类和野生动物研究所| gwyneth.abbott@myfwc.com演讲者生物:梅根·雅培(Meghan Abbott)是佛罗里达鱼类和野生动物保护委员会(FWC),Fish and Wildlife Research Institute的有害Algal Bloom(HAB)研究小组的副研究科学家。她拥有生物学和数学科学学士学位,是公共卫生大师,在环境科学和HAB中特别关注,以及图书馆和信息科学的硕士。梅根(Meghan)协调了佛罗里达有害藻类布鲁姆(Algal Bloom)工作队的公共卫生技术小组(2006-2009),目前自2019年重新激活以来就协调了佛罗里达有害的藻华特遣队。她领导了各种协作计划的发展,以实现对工作队的优先建议。通过FWC红潮研究中心,这包括针对Karenia Brevis Red Tide监测和研究,教育和外展以及管理和公共卫生响应的全州合作计划的要素。合着者:唐纳德·安德森(Donald Anderson),艾米丽·库利(Emily Cooley),杜安·德·弗雷斯(Duane de Freese),码头多奇(Quay Dortch),凯瑟琳·哈伯德(Katherine Hubbard),查尔斯·雅各比(Charles Jacoby),巴布·柯克帕特里克(Barb Kirkpatrick),雪莉·拉金(Sherry Larkin),米歇尔·史密斯(Michelle Smith),朗达·史密斯(Michelle Smith),朗达·沃特金斯(Rhonda Watkins),戴维·沃特(David whitkins)理事会/IRL国家河口计划,国家海洋与大气管理局,佛罗里达鱼类和野生动物保护委员会鱼类和野生动物研究所,佛罗里达州洪水枢纽应用研究与创新,墨西哥沿岸海洋海洋观察系统,佛罗里达大学/佛罗里达大学海洋学系,佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州农业和消费服务部,佛罗里达州农业和消费服务部,佛罗里达州佛罗里达州农业和消费服务部。
摘要 Polygonum cognatum Meissn. 是一种野生可食用植物,在土耳其被称为 madimak。其嫩芽在春季栽培并用作蔬菜。本研究评估了不同干燥处理对 madimak 植物颜色属性的影响,这些植物使用两种不同的方法干燥:热风干燥和微波干燥。风干处理分别在 60、70 和 80 °C 下进行。微波干燥使用四种不同的微波功率水平进行,范围在 160 至 750 W 之间。madimak 的微波干燥比热风干燥更快。随着微波功率的提高,干燥时间大大减少。干燥过程在 0.058 到 0.308 小时之间完成,具体取决于微波功率水平,而热风干燥在 2.583 到 4.166 小时之间。微波干燥对样品颜色质量的影响不如热风干燥大。微波干燥植物的叶绿素 a、叶绿素 b 和总叶绿素含量显著保留。颜色和叶绿素属性均表明,与热风或常温干燥相比,微波干燥更适合马迪马克植物。研究发现,在 750 W 微波功率下,颜色变化最小,叶绿素含量最高。此外,80 °C 热风干燥和 160 W 微波功率水平的最低比能量需求分别为 44.58 kWh/kg 和 107.00 kWh/kg。结果表明,热风干燥温度之间的比能量需求没有显著差异,而微波功率水平之间的差异很大。关键词:Madimak、微波、热风、颜色、比能、可食用植物、叶绿素引言叶绿素是分布最广的植物色素,叶绿素 a 和 b 在食品技术中的重要性源于它们在绿色蔬菜中的作用(King 等人,2001)。叶绿素 a 和叶绿素 b 是主要形式,通常存在于常用于食用的高等植物中,它们的比例大约为 3:1。叶绿素 a 和 b 都是四吡咯酞菁氧合物的含镁衍生物。叶绿素 a 和叶绿素 b 在感知颜色和热稳定性方面也不同。叶绿素 a 呈蓝绿色,叶绿素 b 呈黄绿色(Cui 等人,2004)。它们极易在加工和储存过程中降解。叶绿素转化为脱镁叶绿素和其他衍生物会导致从鲜绿色变为暗橄榄绿色或橄榄黄色,最终被消费者视为品质的下降 King 等人(2001 年)和 Ahmed 等人(2001 年)。叶绿素保留对于确定热脱水绿色植物的最终质量非常重要。在较高温度和酸性条件下,叶绿素环中的中心镁被两个氢离子取代,绿色叶绿素转化为橄榄棕色脱镁叶绿素。在约 60–80 o C 的较低温度下,叶绿素酶活性增加,形成绿色叶绿素,然后叶绿素易受镁损失的影响,从而形成橄榄褐色脱镁叶绿素 (Cui 等,2004)。颜色是植物产品的重要质量属性,叶绿素已被用作绿色蔬菜的质量指标 (Guan 等,2005)。Polygonum cognatum Meissn. 是一种野生植物,在土耳其语中称为“madimak”。这种可食用植物是一种多年生细长木本植物。它生长在海拔 720-3000 米的路边、斜坡和悬崖上。春季收集带叶的嫩芽 (Yildirim 等,2003)。植物的新鲜叶子和茎可作为蔬菜食用。干燥的植物可用作药用植物 (Ozbucak 等,2007)。在土耳其民间医学中,它被用于各种目的,例如其利尿作用和治疗糖尿病(Yildirim 等人,2003 年)。脱水是最古老的食品保存方法之一,是食品加工中非常重要的一个方面。产品在干燥过程中产生的热损伤与温度成正比