金属增材制造(MAM)技术在制造与再制造行业中得到广泛应用,微观组织模拟逐渐凸显其重要性。传统的凝固微观组织模拟方法在MAM应用中都有其优缺点。本文建立了一种确定性凝固微观组织模型,即“侵入模型”,以避免传统方法的本质缺陷。该模型不模拟各个柱状晶粒的生长动力学或推导变量的场形式,而是关注相邻双晶之间的相互作用。在双晶系统中,晶界从热梯度方向的倾斜被理解为一个晶粒向另一个晶粒的瞬时侵入行为,而MAM形成过程中的竞争性晶粒生长行为则是双晶系统中所有侵入行为的总结。为了填补快速凝固理论的空白,利用人工神经网络(ANN)建立了快速定向凝固条件下各向异性生长效应的数据库。以采用线材送料定向能量沉积 (DED) 制备的具有完整树枝状柱状晶粒 (原始 β 晶粒) 的 Ti6Al4V 薄壁样品为基准,测试了新模拟模型的有效性。沿堆积方向重构的原始 β 晶粒的晶粒几何结构与模拟结果具有很好的一致性。在满足应用范围的情况下,该模型还可以应用于 MAM 的其他情况或与各种模型结合,以实现实时凝固晶体学特征预测。关键词:增材制造;微观结构;建模;凝固
摘要:我们对聚酰亚胺纤维上的CO 2激光诱导的电导率进行了激光参数研究。发现诱导的电导率主要发生在扫描线的中心,而不是在整个线宽度上均匀地发生。Microraman检查表明,电导率主要是由于激光照射线中心诱导的石墨烯结构的多层(4-5)的结果。线中心的石墨烯形态和纳米级纤维结构一起以薄壁多孔结构的形式出现。具有每单位长度和激光功率的能量剂量,这种电导率的表面修饰与激光脉冲频率无关,但取决于平均激光功率。可以通过在高功率水平上对激光束进行一次激光束的扫描来实现高电导率。为了达到高电导率,以低功率使用激光,但要以较慢的扫描速度或进行多次扫描来补偿它是有效或有效的。当10毫米扫描长度上的电阻从几百欧姆降低到30欧姆,当单位长度的能量剂量从0.16 j/mm增加到1.0 j/mm,即从5.0 w增加到5.0 w到24 w,在24 W上增加了3.44×10 w/cm 2 2 s cm 2 2 k. 16.54 w/cm的相应功率,一次通行证扫描。相比之下,以超过22.5 mm/s的速度以低于5 W的功率导致非导电开路。
人们对用于制造和修复薄壁结构的定向能量沉积工艺的兴趣日益浓厚,这促使人们更深入地了解该方法的基本构造块的特性:覆层形成。在本研究中,研究了通过沉积 316L 不锈钢 (SS316L) 粉末获得的覆层,其中三个不同的工艺参数是激光功率、激光移动速度和粉末质量流速。通过每个参数的宽样本范围来确保可重复性。从数据测量来看,覆层的平均硬度接近 SS316L 材料的典型 200 Hv,表明 Hall-Petch 效应占主导地位。研究还表明:(i) 激光功率是影响覆层深度的最重要因素,但对覆层厚度影响不大。(ii) 激光移动速度是影响覆层高度的主要参数。 (iii) 粉末质量流速往往会通过厚度增加来补偿深度减少,因此对包层高度没有明显影响。观察到增加激光功率是防止在零稀释下形成包层的最有效方法,零稀释是衡量打印包层与基材结合程度的指标。从 SS316L 包层组得出了无量纲分析。通过使用不同的不锈钢数据集进行验证并推断到更大的参数范围,证明该分析能够促进工艺参数的选择,以满足对包层尺寸的给定要求。由于其应用直观,该分析有可能被用作标准的预打印工具,以提高成功率,从而改善制造周转时间。
添加剂制造(AM)赋予了高性能蜂窝材料的创造,强调了对可编程和可预测能量吸收能力的日益增长的需求。这项研究评估了精确调整的融合纤维纤维制造(FFF)过程对通过多尺度实验和预测建模的2D-热塑料晶格材料的能量吸收和失效特性的影响。宏观厚度和薄壁晶格的平面内压缩测试,以及它们的μ-CT成像,揭示了相对密度依赖的损伤机制和故障模式,从而促使开发可靠的预测建模框架以捕获过程诱导的性能变异和损害。对于较低的相对密度晶格,这是一种基于扩展的排水沟 - 武器材料模型的Fe模型,将Bridgman的校正与危机失败标准融合在一起,可准确捕获破碎的响应。随着晶格密度的增加,沿珠珠界面的界面损伤变得占主导地位,因此需要使用微观粘性区模型富集该模型以捕获界面剥离。预测建模引入了增强因素,是一种直接的方法来评估AM过程对能量吸收性能的影响,从而促进了FFF打印的晶格的逆设计。这种方法对如何优化FFF流程进行了批判性评估,以实现最高可实现的性能并减轻架构材料的故障。
摘要:添加剂制造是一个制造过程,它包括从一层从材料沉积中获得三维对象,这与常规的减法制造方法不同。电弧添加剂制造在制造金属零件的添加剂制造技术中脱颖而出。另一方面,过量的热量输入促进了剩余应力水平的增加,并且缺陷的发生,例如孔,空隙,缺乏融合和分层。这些缺陷在此过程中导致异常,例如电反应的干扰。因此,对于确保产品质量和证明此过程的高生产率特征,制造物品中缺陷和失败的检测至关重要。因此,这项工作旨在表征不同污染对电弧添加剂制造过程的电弧行为的影响,以及该过程制造的薄壁中微观缺陷的发生。为了研究金属预形成中缺陷的存在,使用实验条件来促进缺陷的出现,例如插入污染物。通过直方图和循环图来表示电弧行为分析,电压和当前时间数据,并根据短路的Vilarinho指数评估了弧稳定性。结果证实,可以通过电弧数据分析在线弧添加剂制造过程中识别污染的引入。有效地引入污染物引起了电弧干扰,导致制造缺陷的出现,例如夹杂物和孔隙度,通过金属图表观察到。
第一学期 AS 1010 航空航天工程概论 2 0 0 2 航空航天和航天飞行的历史;飞机和航天器的分类;飞机和航天器主要部件的功能;航空航天工程的细分;空气动力学、推进、结构、系统、飞行力学和控制要素。印度航空航天活动。 第三学期 AS 1020 流体力学 3 1 0 4 流体力学简史,流体及其性质,粘度、热导率、质量扩散率、压缩性和表面张力的概念,其分子考虑。流体静力学 - 压力中心、浮力中心和元中心,ISA。张量微积分(笛卡尔张量)。描述流体运动的欧拉和拉格朗日方法、流线、条纹线和路径线。流体运动学 - 平移、旋转和变形、循环、格林斯托克斯定理。推导微分和积分形式的质量、动量和能量控制方程及其对无粘性和势流的特殊化。非惯性系中的方程。伯努利方程。一维流动。各种情况下的说明性示例。层流,例如库埃特流和哈根-泊肃叶流,轴承和边界层中的流动。量纲分析平板和管道中的粘性流 - 过渡、湍流、管道中的表面摩擦和损耗 AS 2010 材料基础强度 3 1 0 4 应力和应变简介 - 胡克定律、应力和应变变换、主应力和应变 - 圆形截面的扭转 - 薄壁压力容器 - 对称截面梁的弯曲和剪切应力 - 用各种方法计算静定梁的挠度 - 组合载荷引起的应力、失效理论。弹性理论简介、场方程、艾里应力函数、笛卡尔坐标中的二维问题、厚圆柱体的拉梅解。
智能复合材料 (SC) 用于执行器和能量收集器等机电系统。通常,薄壁部件(例如梁、板和壳)被用作结构元件,以实现这些复合材料所需的机械行为。SC 表现出各种高级特性,从压电和压磁等低阶现象到挠电和挠磁等高阶效应。最近在智能复合材料中发现的挠磁现象是在有限条件下进行研究的。对现有文献的回顾表明,当存在挠磁效应 (FM) 时,缺乏对 SC 的三维 (3D) 弹性分析的评估。为了解决这个问题,控制方程将包含项 ∂ / ∂ z ,其中 z 表示厚度坐标。变分技术将指导我们进一步开发这些控制方程。我们将利用各种假设和理论,如3D梁模型、von K'arm'an应变非线性、Hamilton原理以及成熟的正、逆FM模型,推导出厚复合梁的本构方程。进行3D分析意味着应变和应变梯度张量必须以3D形式表示。加入项∂/∂z需要构建不同的模型。值得注意的是,目前的商用有限元代码无法准确、充分地处理微米和纳米级固体,因此使用这些程序来模拟挠磁复合结构是不切实际的。因此,我们将推导出的特征线性三维弯曲方程转换为3D半解析多项式域以获得数值结果。这项研究证明了进行三维力学分析对于探索智能结构中多种物理现象的耦合效应的重要性。
5056; https://orcid.org/0000-0003-3963-8282抽象丢失的泡沫铸造(LFC)是一种经济的方法,可以通过在倒入过程中蒸发膨胀聚苯乙烯(EPS)模式来产生高产金属铸件。该方法可用于施放复杂的模式,例如歧管,具有内部空腔的发动机块和其他复杂的几何形状。必须加工EPS泡沫模式,专门的模具和工具,这使得此过程仅用于大量生产。本研究提出了混合失落的泡沫铸造(HLFC)过程,该过程利用3D打印技术使用融合细丝制造(FFF)来制造轻质的泡沫图案。使用低密度填充填充物的泡沫聚乳酸(PLA)原料打印3D薄壁图案,达到了0.044 g/cm 3的大量图案密度,是传统EPS泡沫的两倍。铝合金A356.2是使用泡沫PLA和相同几何形状的EPS模式铸造的,但在传统LFC的铸造参数的不同组合下。拉伸和显微镜样品是从板上加工的,以进行机械性能和微观结构的比较分析。的屈服强度基本上是相等的,对于平均为96.7 MPa的EPS的样品和基于PLA的铸件的95.7 MPa。此外,对复杂的阀体图案进行了3D打印,激光扫描并施放以进行尺寸分析。观察到超过90%的阀体表面落在±0.2 mm的公差区域内。关键字失去了泡沫铸件,混合失去的泡沫铸件,聚乳酸,扩展的聚苯乙烯,融合细丝制造。制造过程杂志https://doi.org/10.1016/j.jmapro.2024.07.080
[2] S. M. Thompson,L。Bian,N。Shamsaei和A. Yadollahi,“添加剂制造的直接激光沉积概述;第一部分:运输现象,建模和诊断,” Addive Manufacturing,第1卷。8,pp。36-62,2015年10月。[3] V. T. Le,H。Paris和G. Mandil,“使用增材和减法制造技术的直接零件再利用策略的制定”,《增材制造》,第1卷。22,pp。687-699,2018年8月。[4] V. T. Le,H。Paris和G. Mandil,“在再制造环境中合并添加剂和减法制造技术的过程计划”,《制造系统杂志》,第1卷。44,否。1,pp。243-254,2017年7月。[5] A. Ramalho,T。G. Santos,B。Bevans,Z。Smoqi,P。Rao和J. P. Oliveira,“污染对316L不锈钢线和ARC添加性生产过程中声学发射的影响”,Addived Manufacturing,第1卷。51,第1条。102585,2022年3月。[6] S. Li,J。Y. Li,Z。W. Jiang,Y。Cheng,Y。Z. Li,S。Tang等人,“控制Inconel 625的定向能量沉积期间的柱状到等式的过渡”,Addy Manufacturing,第1卷。57,第1条。102958,2022年9月。[7] T. A. Rodrigues,N。Bairrão,F。W。C. Farias,A。Shamsolhodaei,J。Shen,J。Shen,N。Zhou等人,“由Twin-Wire和Arc添加剂制造(T-WAAM)生产的钢 - Copper功能渐变的材料(T-WAAM)”,材料&Designs,第1卷。213,第1条。110270,2022年1月。66,否。8,pp。1565-1580,2022年8月。32,否。[8] V. T. Le,D。S. Mai,M。C. Bui,K。Wasmer,V。A. Nguyen,D。M. Dinh等,“过程参数和热周期的影响,对308L不锈钢墙的质量,该材料由添加剂生产产生的308L不锈钢墙,使用弧形焊接来源,使用弧形焊接源,焊接,焊接,焊接,”。[9] D. Jafari,T。H。J. Vaneker和I. Gibson,“电线和电弧添加剂制造:控制制造零件的质量和准确性的机遇和挑战”,《材料与设计》,第1卷。202,第1条。109471,2021年4月。[10] S. W. Williams,F。Martina,A。C. Addison,J。Ding,G。Pardal和P. Colegrove,“ Wire + Arc添加剂制造”,《材料科学与技术》,第1卷。7,pp。641-647,2016。[11] W. E. Frazier,“金属添加剂制造:评论”,《材料工程与性能杂志》,第1卷。23,否。6,pp。1917-1928,2014年6月。[12] J. Xiong,Y。Li,R。Li和Z. Yin,“过程参数对基于GMAW的添加剂制造中多层单频薄壁零件的表面粗糙度的影响”,《材料加工技术杂志》,第1卷。252,pp。128-136,2018年2月。[13] V. T. Le,“基于气体弧焊接的金属零件添加剂制造的初步研究”,VNUHCM科学技术杂志,第1卷。23,否。1,pp。422-429,2020年2月。58,否。4,pp。461-472,2020年7月。[15] W. Jin,C。Zhang,S。Jin,Y。Tian,D。Wellmann和W. Liu,“不锈钢的电弧添加剂制造:审查”,《应用科学》,第1卷。[14] V. T. Le,Q。H。Hoang,V。C. Tran,D。S. Mai,D。M. Dinh和T. K. Doan,“焊接电流对由薄壁低碳构建的形状和微观结构形成的影响,由电线添加剂制造建造的薄壁低碳零件”,《越南科学和技术杂志》,第1卷。10,否。5,第1条。1563,2020年3月。[16] T. A. Rodrigues,V。Duarte,J。A. Avila,T。G。Santos,R。M。Miranda和J. P. Oliveira,“ HSLA钢的电线和弧添加剂制造:热循环对微结构和机械性能的影响”,《增材制造》,第1卷。27,pp。440-450,2019年5月。[17] J. G. Lopes,C。M。Machado,V。R。Duarte,T。A。Rodrigues,T。G。Santos和J. P. Oliveira,“铣削参数对电线和弧添加剂生产产生的HSLA钢零件的影响(WAAM)”,《制造工艺杂志》,第1卷。59,pp。739-749,2020年11月。[18] A. V. Nemani,M。Ghaffari和A. Nasiri,“通过传统滚动与电线弧添加剂制造制造的船建造钢板的微观结构特性和机械性能的比较,”添加剂制造业,第1卷。32,第1条。101086,2020年3月。[19] P. Dirisu,S。Ganguly,A。Mehmanparast,F。Martina和S. Williams,“对线 +电线 + ARC添加剂生产的高强度高强度低合金结构钢组件的裂缝韧性分析”,材料科学与工程:A,第1卷,第1卷。765,第1条。138285,2019年9月。787,第1条。139514,2020年6月。[20] L. Sun,F。Jiang,R。Huang,D。Yuan,C。Guo和J. Wang,“各向异性机械性能和低碳高强度钢分量由Wired and Arc添加剂制造制造的低强度钢组件的变形行为”,材料科学和工程学:A,A,第1卷。[21] https://doi.org/10.1007/s11665-022-06784-7
3D印刷脚手架提供了治疗脊髓损伤(SCI)的有前途的策略。在这里,我们提出了一种创新的生物技术方法,用于以仿生结构的自由形式打印脚手架的3D打印,其空间分辨率最高为千分尺,旨在植入Wistar大鼠的SCI。脚手架的制造是基于有机聚合物的2光子光聚合化,并且可扩展到病变的几何形状。脚手架被实现为多个填充的平行平行微调(每侧50μm),延伸整个长度。这些微连接被薄壁(5-10μm)隔开,使支架几乎是空心的,同时使其内部表面积最大化。该设计提供了一种最佳的底物,在空间上沿Rostro-caudal方向对齐,以支撑轴突和血管向内生长。我们发现,在低胸腔水平的脊髓的侧面半碎片切除中植入的脚手架表现出与周围组织的良好整合,而没有形成明显的神经胶质疤痕。髓鞘轴突和少突胶质细胞以及在操作后的12周内在植入支架的每个微肺中观察到血管,并且在整个长度中至少在支架中重新生成1000个轴突。治疗可显着提高运动功能,并在第8周降低同侧偏度肢体的痉挛,恢复至少20周。因此,具有较大内部表面积的3D面向空心支架继续持续微台网,有效地降低了轴突分散体,模仿受体组织的自然结构,并创建了用于增强脊髓再生的条件,并恢复了PATETIC LIMB的运动功能。
