对微电器设备和有效热电的有效导热的需求不断增长,这增加了对具有极高或极低导热率的新材料的需求[1,2]。二维(2D)薄片,例如石墨烯或六角硼(HBN)在固态材料中最高的导热率中显示出最高的导热率。它们的尺寸与吸引人的电荷和热运输特性相结合,使其成为纳米电子设备的热量管理的良好候选者[3]。尽管最近在纳米技术方面取得了进步,但对纳米结构和低维系统热流的研究仍然是一项艰巨的任务。在这项工作中,我们介绍了旨在在多个方向上测量纳米材料的平面热特性的设备的制造和表征。我们在这里提出了一种旨在在多个方向上测量纳米材料的纳米材料的热能性能的设备的制造和表征[4]。此外,该设备允许同时执行电气和光学测量。这允许空间解决最终的热性能各向异性并校正接触电阻。制造没有与要研究的特定纳米结构有关的元素。最后,我们使用250 nm厚的硅薄片(图1)验证了设备的准确性,该硅层充当参考系统,并提供了探索主要热接触电阻的影响的可能性。我们已经使用拉曼温度计来计算薄片的有效晶格温度,这是膜上施加的温度的函数(图2),我们提取了平均界面界面导热率为2.4∙104𝑊𝑊22。
在硅(SI)和氮化硅(SIN)基于光子整合电路(PICS)的基于硅(SI)上的薄膜(SIN)上的薄膜(PICS)的异质整合在未来未来的纳米光子薄片调制器的发展中起着至关重要的作用。由于铁电薄膜的电形(EO)特性在很大程度上取决于它们的晶体相和质地,因此在这些平台上的Batio 3薄系统的整合远非微不足道。到目前为止,已经开发了使用SRTIO 3模板结合使用SRTIO 3模板纤维与高真空沉积方法结合使用的常规集成途径,但是它的吞吐量较低,昂贵,需要单晶基板。要缩小这一差距,需要一种成本效率,高通量和可扩展的方法来集成高纹理的Batio 3薄膜。因此,提出了使用LA 2 O 2 CO 3模板膜与化学溶液沉积(CSD)过程结合使用LA 2 O 2 CO 3模板膜整合的替代方法。在这项工作中,溶液处理的BATIO 3薄片的结构和EO特性是表征的,并评估了其整合到光圈谐振器中。BATIO 3纤维表现出纹理,其大型皮孔系数(r E e镜)为139 pm v-1,并且在基于环的谐振器调制器中积分显示为1.881 V cm的V le,带宽为40 GHz。这可以使Batio 3薄膜在PIC平台上进行低成本,高通量和富裕整合,并在PIC平台上以及潜在的大规模制造纳米光子BATIO 3薄片调制器。
金属和无机材料也用于柔性电子产品。金属具有高导电性,可用作电子产品中的导体。其中,银、铜、镍和碳(例如石墨烯)已以各种形式(包括薄片、纳米线、纳米管)用于柔性电子产品。这些金属可以作为金属油墨印刷。无机材料没有或只有有限的导电性,可用作电子产品中的绝缘体(电介质)或半导体。例如,聚合物、氧化钛和氧化锌已用作柔性和印刷电子产品中的半导体。其他几种氧化物和聚合物已被用作电介质,例如 PMMA 和聚氨酯。与粘合剂、溶剂和添加剂结合,这些材料可以印刷在柔性基板上。5
印刷电子是一个充满活力的研究和技术领域,可获得按需功能元件。[1–3] 近年来,已报道了具有半导体、[4] 光电、[5] 储能[6] 和磁性 [7] 特性的印刷电子。特别是印刷磁阻传感器已证明其作为非接触式电磁开关 [8,9] 和非接触式交互式皮肤平台的相关性。[10] 这些磁敏感复合材料是通过将铁磁磁阻 (MR) 颗粒或薄片分散在各种凝胶状或热塑性粘合剂溶液中而制成的(表 1)。[9–17] 虽然这些贡献在过去十年中显著推动了该领域的发展,但由于组成颗粒或薄片的复杂性和高生产成本,这些技术的大规模应用仍未实现。表现出高达 37% 的巨磁电阻效应 (GMR) 的薄片由多层异质结构组成,需要逐层沉积亚纳米厚的薄膜。[9–13] 需要精确调整层的厚度以实现可测量的磁阻变化。这导致表现出 GMR 的粉末的生产成本增加。为了解决 GMR 粉末的可扩展性问题,采用了表现出各向异性磁阻 (AMR) 的商品可用铁磁材料颗粒。[14] 然而,测得的 AMR 效应降低到 0.34%。此外,这些 MR 技术通常在 500 mT 以下的磁场下具有线性响应,并且在此之外几乎不敏感。缺乏一种具有强磁阻信号并在宽磁场范围内工作的可打印商品级材料。使用打印技术瞄准更广泛的磁场可以实现新型低成本技术解决方案,从非接触式开关应用到机械的工业监控。采用传统的印刷方法实现大规模生产和高磁场下的线性响应需要新材料的开发。
Matrifit 已知只有少数材料(经过特殊处理的半导体)能够以合理的效率显示 PV 效应(参见下方方框中的“太阳能电池”条目)。大多数商用 PV 模块都基于从高品位硅单晶或多晶锭上锯下的薄片。单晶锭以“批量”工艺生长。尽管该方法速度慢且耗能大,但它可以生产出具有良好转换效率(通常为 12% 到 17%)的电池。多晶 PV 材料由较不费力的方法制成,即从许多小硅晶体铸造锭,转换效率通常略低。如果封装并得到适当的护理,这两种材料的性能都不会降低。图 1 显示了晶体硅如何生产成 PV 模块。
(绝缘体和开关) 硅晶锭:是由直径为 8 至 12 英寸、长度约为 12 至 24 英寸的硅晶体组成的棒。 切片机:这些圆柱体被切成薄片 毛坯晶圆:这些圆柱体是高度抛光的晶圆,厚度不到四十分之一英寸。 20 到 40 个处理步骤:晶圆要经过多步光刻工艺,电路所需的每个掩模都要重复一次。每个掩模定义组成完整集成电路的晶体管、电容器、电阻器或连接器的不同部分,并定义制造器件的每个层的电路图案。 图案化晶圆:晶圆上的图案与掩模的精确设计一致
这个序言开始回想起这是我连续第四年介绍Inc的年度报告。这相当于记住今年2024年(如地球中部,不想比较自己!)也是该研究所管理的选举年。 div>必须在今年夏天召集选举。 div>也许还早在这四年朝这个方向保持平衡还早,尽管我可以肯定的是,这是一种经验,令人兴奋和有意义的,多次,压倒性的,对他人负有很多责任,但是由于团队的热情支持和构成该研究所的部门的热情,始终留下前进的责任。 div>我只希望谁是夏天后的新任尼古拉斯·卡布雷拉(NicolásCabrera)的新任导演或导演,这会使他像我们一样多,如果他取得了更大的成功,那么在薄片上,蜂蜜。 div>
复合材料是由两种或多种组成材料制成的,具有明显不同的物理或化学特性,在成品结构内的宏观或显微镜尺度上保持分开和不同。唯一的条件是其中一种材料应在处理后保留其原始的物理身份。在复合材料中,一种称为增强相的材料的形式为纤维,薄片或颗粒,并嵌入其他称为矩阵相的材料中。加固材料和基质材料可以是金属,陶瓷或聚合物。复合材料的历史或自然例子很丰富:由粘土制成的砖块,用稻草加固,带有竹芽的泥墙,混凝土,混凝土,用钢钢筋加固,花岗岩,米奇和长石的花岗岩,由石英组成