在健康的人类成年人中观察到的抽象生理镜活动(PMA)描述了单侧肢体运动过程中对侧同源肌肉的非自愿共激活。在这里,我们使用神经肌肉测量值(肌电图; EMG)提供了新的证据,即在通知人类参与者(10名男性,10个女性)有关其存在并通过标准的协议的基本理解的固有手部肌肉的单侧等轴测收缩期间,PMA的幅度可以自愿抑制。重要的是,尽管在任务执行过程中没有任何在线反馈,并且没有特殊培训,但要求在参与pant的情况下立即观察到PMA的显着抑制。此外,我们观察到PMA的下降特别伴随着用脑电图(EEG)记录的相对额叶D功率的折痕。相关性分析进一步促进了一旦参与者开始抑制,PMA的个体振幅与额叶D功率之间的逆关联。在一起,这些结果表明,额叶区域的D功率可能反映了执行过程,在这种情况下,在这种情况下为PMA施加抑制性控制。我们的结果为开发与非自愿运动的神经居住相关的治疗应用提供了一个初始参考点,这可以通过在老年人中观察到的PMA实现,然后才能完全表现出不良的明显运动模式。
摘要:要开发用于自适应光学 (AO) 系统的高性能控制器,首先必须推导出足够精确的可变形镜 (DM) 状态空间模型。然而,开发考虑系统阻尼、执行器动力学、边界条件和影响系统动力学的多物理现象的逼真的大规模有限元 (FE) 状态空间模型通常具有挑战性。此外,建立一个能够自动快速推导出不同执行器配置和系统几何形状的状态空间模型的建模框架也具有挑战性。另一方面,为了实现精确的基于模型的控制和系统监控,通常需要从实验数据中估计状态空间模型。然而,这是一个具有挑战性的问题,因为 DM 动力学本质上是无限维的,并且具有大量的特征模态和特征频率。在本文中,我们提供了解决这些挑战的建模和估计框架。我们开发了一个面板 DM 的 FE 状态空间模型,该模型结合了阻尼和执行器动力学。我们研究了不同模型参数的频域和时域响应。使用 COMSOL Multiphysics 软件包中包含的 LiveLink for MATLAB 工具箱,状态空间建模过程完全自动化。开发的状态空间模型用于生成估计数据。该数据与子空间识别算法一起用于估计降阶 DM 模型。我们解决了模型阶数选择和模型验证问题。本文的结果为广大 AO 和机电一体化科学界提供了必要的建模和估计工具。开发的 Python、MATLAB 和 COMSOL Multiphysics 代码可在线获取。
寻找可靠且安全的人类身份识别技术非常重要,并且主要方法在科学上更有效。其中,死灵镜检查和DNA分析。本研究的目的是促进有关死灵镜检查和在法医活动中应用的DNA的知识,强调其技术和尸体鉴定的困难。这是一项综合书目综述,其中在PubMed和Wiley在线图书馆数据库中进行了书目调查。用于坏死膜镜检查,使用了以下描述:“指纹”和“验尸识别”;发现了245篇文章,其中包括6篇文章。用于DNA分析,使用了“人类鉴定”,“ DNA”,“法医遗传学”和“验尸”;发现了41和6,并通过包含和排除标准选择。在验尸后识别方法中,死灵镜检查是完成第一个身体识别过程的技术,该技术可以接受旨在重新组装数字纸浆的过程,例如木乃伊和烧焦。代表一种便宜,简单且实用的技术。进行了有关DNA分析,SNP(串联中的短次重复)和STR(简单的核苷酸多态性),并且骨骼和牙科基质样品具有延长的抗降解性。此外,成功获得DNA结果的概率取决于恢复的大部分损伤水平和放大抑制剂的存在。因此,尽管坏死膜镜检查和DNA分析具有特定的优势和局限性,但两者都取决于技术的改进,以超过保护现象引起的局限性,从而可以改善法医技术。
透明导电金属氧化物已成为研究的主题,这要归功于它们的独特物理特性以及潜在的微观和纳米电子设备和显示单元的应用。这些材料的基本实际应用是基于明显的特异性抗性和高可见的透射率。透明的金属氧化物尤其包括诸如碳锡氧化物,氧化锌,氧化镉等化合物。氧化锌半导体作为压电和光纤材料具有实用的应用潜力,可作为功能性气体传感器组件,表面声设备,透明电极和太阳能电池[1-4]。高光带隙值(〜3。3 eV在室温下)和激子结合能(约60 meV)允许将ZnO作为创建下一代紫外线光电设备和彩色显示单元的磷光器的材料。对于上面提到的许多应用,例如,通过合金来控制ZnO薄膜结构的物理参数的不稳定性是必不可少的。在这种情况下,铜合金添加剂更有效,因为铜是半导体中迅速扩散的杂质,它会导致结晶结构和物理性能的修改,例如,表面状态能量参数以及光学特性[5-7]。后者提供了有关光学主动故障的能量结构的其他信息,这具有很高的实际兴趣。这项研究的目的是研究未扎的ZnO铜掺杂(ZnO:Cu)薄膜的光光谱的行为。
简体英语摘要背景和研究目标在英国,大约有十三个婴儿中就有一个是早产。尽管存活率取得了重大进展,但脑室内出血 (IVH) 仍然是早产最严重的并发症之一。脑室内出血 (IVH) 是指出血进入脑部液体空间,并伴有严重的脑室内出血 (IVH) 和出血后脑室扩张 (PHVD),在早产儿中很常见。这会导致脑液积聚,从而增加脑压。脑出血会危及生命,也会导致视力、听觉、认知(理解)和运动功能(运动)问题。目前最好的治疗方法是在短时间内手术植入临时引流装置。有一种新疗法叫做神经内镜灌洗 (NEL),即在插入临时引流管之前,将一个小型摄像机插入大脑的液体空间(脑室),以冲洗掉尽可能多的血液。这项研究将调查在插入临时脑脊液 (CSF) 引流装置的标准程序中添加 NEL 是否会改善 2 岁儿童的发育
机构 1 德国奥格斯堡大学第三医学院,奥格斯堡 2 比利时鲁汶天主教大学 (KUL) 胃肠病学和肝病学系,鲁汶大学医院 TARGID 3 意大利罗马阿里恰 Ospedale dei Castelli 医院胃肠病学和消化内镜科 4 意大利罗马大学解剖学、组织学、法医学和骨科科学系 5 葡萄牙波尔图综合癌症中心和 RISE@CI-IPOP(健康研究网络)胃肠病学系 6 葡萄牙波尔图大学医学院 MEDCIDS 7 英国朴茨茅斯朴茨茅斯医院大学 NHS 基金会内镜科 8 英国伦敦伦敦大学学院医院 Wellcome/EPSRC 介入和外科科学中心 9 外科和介入科学,伦敦大学学院医院,伦敦,英国 10 胃肠服务,伦敦大学学院医院,伦敦,英国
支气管镜检查后感染是呼吸医学中的一个重要问题,因为它们可能会加剧患者的发病率,尤其是对于免疫功能低下的人或已有肺部疾病的人,而肺部疾病之一就是感染。感染源于下呼吸道病原体,大多数感染源于再处理操作。当支气管镜与呼吸道粘膜和血管接触时,就会发生感染。菌血症是支气管镜检查后感染更常见的并发症,而不是肺炎。它通常涉及凝固酶阴性或阳性葡萄球菌、非溶血性或溶血性链球菌、柠檬酸杆菌属和克雷伯氏菌。然而,一般来说,支气管镜检查后感染的发病率主要是由革兰氏阴性细菌引起的。各种风险都可能影响支气管镜检查后感染,从而增加疾病的严重程度直至死亡。提高服从性和预防感染传播非常重要。减少细菌病原体、控制感染是降低支气管镜检查后感染死亡率的重要措施,因此本研究对支气管镜检查后感染进行详细综述。
在过去的几十年中,皮肤镜检查的流行度已大大增加,并且已经检查了多个病变。该设备采用放大倍率和偏振光来照亮病变的最小特征[3]。此外,当以非接触方式使用的方式使用更深刻的系统时,极化辐射几乎没有反射渗透表皮。它解释了传统的治疗性皮炎与纳米级的皮肤病学有关人类视力看不见的形态特征的联系[4]。由于研究的研究量有限,因此集中在棕榈底疣,玉米和升炉中的文献结局中,在解析和无效的情况下查看皮肤镜的水平。
传统镜子在反射时会改变圆偏振光的手性。然而,人们对设计和制造手性保持镜子以及手性反射超表面的需求日益增长,这些镜子的反射光子自旋态可调,可在紫外和可见光域的宽波长范围内工作。到目前为止,大多数手性镜都是通过自上而下的技术制备的,例如电子束光刻,这些技术成本非常高,并且难以扩展到宏观设备。这里介绍了一种有效的自下而上的策略,用于通过使用逐层组装取向银纳米线层来制造手性镜,这些银纳米线层是通过在半反射银层上进行掠入射喷涂制备的。由此产生的手性超表面对紫外、可见光和近红外域中宽波长范围内的圆偏振光显示出结构相关的差分反射率,达到了极高的品质因数。它们的差分反射率可达到最大偏振效率的 95%,且反射光的旋向性部分保留。这些具有可调手性反射率的大面积手性镜在光学、传感和手性光与物质相互作用等各个领域都有着广阔的应用前景。
如今,尤其是对于便携式设备而言,低功耗是延长电池寿命的基本约束。在这种情况下,传统电路无法满足要求。需要重新设计采用较低技术的电路,使其在减少供电的情况下也能正常工作,这是设计师的主要关注点。虽然规模化技术有助于通过要求低供电来降低功耗,但同时,如果设计是模拟的,二阶效应就会变得突出。在数字中,这种影响不会使性能下降太多。在任何 IC 中,性能都由用于构建它的组件决定。如果 IC 中使用的子块消耗的功率较低,则意味着整个系统的性能会更好。对于模拟 IC,电流镜是广泛用于大多数电路的基本块之一。电流镜的理想特性包括大动态范围、宽带宽、低输入电阻和高输出电阻。然而,在纳米技术中,