摘要:本文介绍了一种开发独立于工具的高保真基于光线追踪的光检测和测距 (LiDAR) 模型的过程。该虚拟 LiDAR 传感器包括扫描模式的精确建模和 LiDAR 传感器的完整信号处理工具链。它是使用标准化开放仿真接口 (OSI) 3.0.2 和功能模型接口 (FMI) 2.0 开发为功能模型单元 (FMU)。随后,它被集成到两个商业软件虚拟环境框架中以证明其可交换性。此外,通过在时间域和点云级别比较模拟和实际测量数据来验证 LiDAR 传感器模型的准确性。验证结果表明,模拟和测量的时间域信号幅度的平均绝对百分比误差 (MAPE) 为 1.7%。此外,从虚拟目标和真实目标接收的点数 N points 和平均强度 I mean 的 MAPE 分别为 8.5% 和 9.3%。据作者所知,这是迄今为止报告的接收点数 N points 和平均强度 I mean 的最小误差。此外,距离误差 d error 低于实际 LiDAR 传感器的测距精度,对于此用例为 2 cm。此外,将试验场测量结果与商业软件提供的最先进的 LiDAR 模型和提出的 LiDAR 模型进行了比较,以测量
多次无误攻击是饱和和克服导弹防御系统的最简单方法之一。为了提高针对此类攻击者群体的拦截效率,有必要根据其运动学局限性分配拦截器。此外,这样的分配方案必须是可扩展的,以应对大型方案并允许动态重新分配。在本文中,我们首先提出了这种武器目标分配(WTA)问题的新表述,并提供了使用加固学习(RL)以及贪婪的搜索算法来解决它的分散方法。从每个追随者与所有目标的角度考虑参与。同时,其他拦截器与目标群体相关,而其他团队成员则可以使用其分配和成功概率。为了改善中途轨迹的塑造,在追随者和进来的对手之间放置了静态虚拟目标。每个拦截器根据从计算有效的仿真环境中的大量场景中学到的策略动态选择目标。RL输入状态包含目标的拦截器达到性覆盖范围以及其他导弹成功的概率。RL奖励汇总了团队绩效,以鼓励在分配层面上进行合作。相关的可及性约束是通过采用拦截器运动的运动学近似来分析获得的。RL的使用确保所有拦截器的实时可扩展和动态重新分配。我们将基于RL的分散WTA和指导方案与贪婪解决方案的性能进行比较,显示了RL的性能优势。
通过地面激光器发出的单个多 kJ 脉冲避免低地球轨道上的空间碎片发生烧蚀碰撞 Stefan Scharring、Gerd Wagner、Jürgen Kästel、Wolfgang Riede、Jochen Speiser 德国航空航天中心 (DLR),技术物理研究所,Pfaffenwaldring 38-40,70569 斯图加特,德国 摘要 我们对一个概念性想法进行了分析,即从地面激光站发射的单个高能激光脉冲是否可能导致碎片物体表面的物质烧蚀,从而产生后坐力,从而产生足够高的速度变化,以避免空间碎片碰撞。在我们的模拟中,我们评估了大气限制的影响,例如由于气溶胶消光导致的激光功率损失以及由于大气湍流导致的激光束增宽和指向抖动。为了补偿湍流,探索了自适应光学系统在合适发射器配置和激光导星组合方面的使用。根据 ESA DISCOS 目录,使用具有简化几何形状的虚拟目标来研究激光与火箭体、任务相关物体和非活动有效载荷之间的相互作用。此外,NASA 标准破碎模型可作为碰撞和爆炸碎片的参考,这些碎片在低地球轨道上产生了 9101 个碎片目标。对于这些物体,使用基于光线追踪的代码对激光烧蚀后坐力进行了研究,同时考虑了未知的目标方向以及残余激光指向误差,这些误差构成了整个 5 个维度(3 个旋转,2 个平移)的随机性来源,这些随机性来源采用蒙特卡罗方法解决。根据特定碎片物体平均高度的计算激光通量分布计算激光动量耦合。作为计算激光与物质相互作用的输入,使用了铝、铜和钢作为代表性空间碎片材料的辐照实验数据。从照射仰角、轨道位移、动量转移不确定性、成功概率、碎片材料以及碎片尺寸、质量和启动激光烧蚀过程所需的最小能量密度等方面讨论了激光赋予动量的模拟结果。1.引言由于空间碎片的数量不断增加,且难以进行轨道改造,近年来提出了几种基于激光的空间碎片远程动量转移 (MT) 概念[1][2]。特别是,由于连续发射 (CW) 激光器的商业化应用,其平均输出功率超过 10 kW 级,通过光子压力进行 MT 似乎变得可行。为了避免空间碎片碰撞,模拟已经表明,在多次激光站过境期间,通过目标照射可以实现几毫米/秒的足够高的速度增量 [1]。最近,在 LARAMOTIONS(激光测距和动量传递系统演化研究)研究中,研究了用于碎片跟踪和避免碰撞的相应激光站网络的可行性和估计性能。这项研究是由我们研究所领导的一个财团为欧洲航天局 (ESA) 开展的概念分析。[3] 概述了研究结果,[4] 列出了使用光子压力进行轨道碰撞避免的详细天体动力学可行性研究,而 [5] 显示了所采用的激光站网络的详细结果。激光烧蚀的动量耦合比光子压力的耦合高出 3 到 5 个数量级 [6]。因此,烧蚀通常被认为是在多次高能激光站过境期间通过降低近地点清除激光碎片的合适机制。然而,最近在真空中对几厘米大小的物体进行的跌落实验表明,激光烧蚀动量转移在避免空间碎片碰撞方面具有巨大的潜力,证明单个激光脉冲就可能使小的空间碎片状物体产生几十 ⁄ 的速度变化∆ [7]。