Cotesia flavipes是属于Braconidae家族的重要膜翅目幼虫寄生虫。由于其寄生虫对鳞翅目虫害的幼虫阶段的影响,其在害虫管理策略中的用法很有希望。目前的研究旨在确定寄生虫质量增殖和增强释放的最佳宿主年龄。实验表明,雌性C. c。c。c. sesamia降低了所有幼虫年龄段。在所有幼虫年龄中,C。Flavipes在春季(高达90%)和哈里夫(高达80%)季节更喜欢寄生的第二至第三龄。在刺痛,茧产生和成年寄生虫出现之间没有实质性差异。宿主的年龄对成人长寿具有重大影响,女性的寿命比男性的时间更长。因此,还建议将幼虫龄(第二和第三)用于高质量的质量质量幼虫寄生虫,尤其是C. flavipes,因为它们的强寄生虫和高净生殖速率。因此,S。不中期的第二和第三龄型将建议用于大量的c。1travipes,并将这些寄生虫在该领域的释放作为成功的生物控制程序。
CRISPR/Cas9 技术在蔬菜育种中的应用 Şeyma SÜTÇܹ*、Gölge SARIKAMI޲ ¹M.A.工程,安卡拉大学,农学院,园艺系,安卡拉; ORCID: 0000-0002-0205-6062 ²Prof.博士,安卡拉大学,农学院,园艺系,安卡拉; ORCID:0000-0003-0645-9464 摘要 开发能够耐受恶劣环境和土壤条件、提高植物产量和品质、增强植物抗病虫害能力的新品种是育种的优先目标之一。特别是近年来,培育对造成产量和品质损失的生物和非生物胁迫因素适应性强的品种对植物育种具有重要意义。经典育种方法在新品种的开发中被广泛应用。但由于过程漫长,需要大量劳动力,目前育种计划中都纳入了技术方法,以确保育种过程更快、更有效地进行。随着分子生物学领域新一代技术的引入,育种工作进一步加速。近年来,随着新一代CRISPR/Cas9基因组编辑应用,可以对基因组中的目标区域进行编辑,赋予植物用于育种的特征。在此背景下,开展了各种主题的研究,包括提高对病虫害的抵抗力、提高产品质量以及培育耐干旱和盐分胁迫的植物。在本研究中,根据当前的研究成果评估了 CRISPR/Cas9 技术在某些蔬菜品种育种中的应用。关键词:育种,CRISPR/Cas9,基因组编辑 CRISPR/Cas9 技术在蔬菜育种中的应用 摘要 开发高产、优质、抗病虫害、耐受恶劣环境和土壤条件的新品种是育种的主要目标之一。近年来,培育能够耐受造成产量和品质损失的生物和非生物胁迫因素的优良品种对植物育种具有重要意义。经典育种方法在新品种的开发中被广泛应用。但由于过程漫长、劳动强度大,目前育种计划中都纳入了生物技术方法,以确保育种过程更快、更有效地进行。随着分子生物学领域新技术的引入,育种研究的速度加快了。关键词:育种,CRISPR/Cas9,基因组编辑近年来,CRISPR/Cas9 新一代基因组编辑技术已用于编辑目标基因组区域,以开发具有所需性状的植物。在此背景下,开展了各种育种目标的研究,例如提高对疾病和害虫的抵抗力、提高产品质量以及开发耐旱和耐盐胁迫的植物。在本研究中,根据目前的研究结果,评估了 CRISPR/Cas9 技术在某些蔬菜品种的育种中的应用。
第1部分理解和破坏害虫•1。对蓟马和其他小型飞行昆虫的视力和嗅觉的理解,以增强生物控制:新西兰的植物和食品研究; •2。昆虫的基因工程以抑制虫害繁殖:美国北卡罗来纳州立大学的麦克斯·斯科特(Max Scott); •3。开发基于植物的昆虫生物防治剂:Azucena Gonzalez-Coloma,CSIC,西班牙; •4。基于神经肽的生物防治剂的开发用于管理害虫:英国格拉斯哥大学Shireen Davies; •5。使用基因沉默(RNA干扰)技术产生安全的杀虫化合物:意大利Enea的Salvatore Arpaia; •6。理解反对害虫攻击的植物防御:美国路易斯安那州立大学的迈克尔·斯托特;第2部分改善了生物防治产品开发和使用•7。制定生物防治剂以进行植物保护的钥匙问题:琳达·马斯卡特(Linda Muskat),应用科学大学 - 德国比勒菲尔德(Bielefeld); •8,促进新的生物防治产品来控制害虫:新西兰林肯大学Travis Glare; •9,用于害虫控制的生物防治剂的应用技术开发:奥地利奥地利理工学院的Claudia Preininger; •10。对害虫的生物防治剂进行改进:美国环境保护局的香农·博尔赫斯,生物农药和污染预防司;
环境压力是全球农业生产力和粮食安全的主要限制。全球气候的突然变化和严重变化使这个问题恶化。甘蔗产量的形成和蔗糖的积累受到生物和非生物胁迫的显着影响。了解与这些压力相关的生化,生理和环境现象对于增加农作物的产量至关重要。本评论探讨了环境因素对蔗糖含量和甘蔗产量的影响,并突出了不足的供水,温度爆发,虫害和疾病的负面影响。本文还解释了活性氧(ROS)的机理,即环境应力下不同代谢产物的作用,并突出了甘蔗中环境应力相关的抗性基因的功能。本综述进一步讨论了甘蔗作物改善方法,重点是内生机制和内生菌在甘蔗植物中的应用。内生菌在植物防御中至关重要。它们产生生物活性分子,用作生物防治剂,以增强植物免疫系统并通过与植物相互作用来改变环境反应。本综述提供了内部机制,以增强甘蔗植物的生长和环境抵抗力,并为提高甘蔗植物的富裕性和作物生产率提供了新的想法。
国家计划304(NP304)行动计划整合了敏捷性,创新和弹性的原则,以确保NP304研究在满足美国农作物生产和保护的不断发展的需求方面保持相关,响应能力和有效。敏捷性,创新和弹性(空气)是执行2025-2030 NP304行动计划的指导原则。项目协调,跨学科研究和利益相关者的参与将有助于迅速而敏捷的反应对虫害,昆虫媒介传播疾病和杂草构成的新兴威胁。NP304科学家将通过整合先进的分子和育种技术,收集,计算生物学,机器学习,人工智能和/或数字农业中的制定作物保护和生产的开创性解决方案。这种创新将减少害虫和杂草对农业生产的影响,而负面影响控制策略对生态系统健康的影响负面影响。预期的产品和结果包括开发农业生产实践和害虫管理策略,这些策略对气候变化,入侵物种的影响以及害虫昆虫和杂草种群的适应性更大。NP304在空中原则的指导下的科学家的研究将提供支持美国农业的农民和利益相关者的工具和资源:
菊花 (Dendranthema grandiflora Tzvelve syn. Chrysanthemum morifolium Ramat.) 是世界上最重要的开花作物之一。花卉因其多样的颜色、形态、大小、形状和用途而备受推崇。开发具有新特征的菊花品种,以适应其不同的花色、形状、大小、开花时间、采后品质对生物和非生物胁迫的耐受性。近年来,研究人员使用各种常规和非常规育种技术来了解形态和分子水平上的分类研究、相关性和关联,包括转基因技术、基因组编辑和标记辅助选择 (MAS) 与野生近缘种,以将各种观赏性状从野生型引入栽培品种。此外,高通量技术,特别是基因组学、转录组学、蛋白质组学、代谢组学和微生物组学(统称为组学平台)的最新进展导致了大量数据的收集。通过生物技术方法实现的主要特性包括开发新的花色、改变花和植物形态、抗虫害和抗病性以及增强收获后属性。本综述总结了传统和现代分子育种方法以及新兴技术在花卉栽培方面取得的最新成就。
这项研究旨在评估尼日利亚使用抗线虫和木薯以改善农民的可持续性并减轻害虫压力的有效性。线虫显着影响全球作物产量和可用性,因此需要开发耐药品种以减少产量损失并依赖化学控制措施。在尼日利亚的Agbor-NTA进行了野外实验,使用耐药品种和抗性品种D从CRISPR-CAS9和Marker Assisted选择开发。研究发现,耐药品种将线虫计数降低了80%,产量增加和净利润更高。耐药品种还显示出合理的线虫控制和经济回报,将线虫人口大幅降低到每克12,降低了76%。CRISPR-CAS9的采用率到2024这项研究强调了先进的育种技术在生产抗线虫的农作物中为农业可持续性和经济生产的重要性。CRISPR-CAS9和MAS技术的种质应用成功改善了遗传改善,虫害压力减少和增加的产量。这些发现与通过促进可靠的农作物类型来维持农业依赖地区的粮食供应和经济稳定性来改善农业可持续性的努力保持一致。
收获后损失和食物浪费已成为全球食品供应链中的关键挑战,导致经济损失、环境恶化和粮食不安全。本文探讨了收获后生物技术和基因工程的创新应用,通过延长易腐产品的保质期和最大限度地减少食物浪费,作为解决这些问题的有希望的解决方案。基因工程技术的进步为开发具有增强的抗病虫害和环境压力的作物铺平了道路。此外,通过操纵与成熟和衰老相关的基因,科学家能够设计出保质期更长的水果和蔬菜。这些转基因生物 (GMO) 表现出更好的收获后特性,为运输、储存和消费提供了更长的时间窗口。生物技术干预还包括使用生物防治剂和有益微生物来抑制收获后病原体,从而减少腐败和腐烂。抗菌肽和天然化合物等生物防腐剂的开发为传统化学防腐剂提供了一种环保的替代品,有助于食品安全和可持续性。此外,智能包装技术与基因改造的结合增强了对储存和运输过程中环境条件的监测和控制。配备传感器的智能包装材料可以检测温度、湿度和气体成分的变化,从而实现实时调整以延长易腐货物的新鲜度。关键词:环境;环保;储存;生物防腐剂;收获后;易腐货物;
在国家边界中引入侵入性害虫已成为作物生产的主要关注点。因此,国家植物保护组织是加强其监测策略的挑战,这些策略受到检查设备的重量和规模以及中断物种的税收 - 原子扩展的阻碍。此外,由于缺乏适当的植物保护措施,研究人员很难按时解决一些阻碍农民生产力和盈利能力的害虫。Farmers对合成农药和生物防治剂的依赖导致了重大的经济和环境影响。DNA条形码是一项新型技术,具有改善综合害虫管理制造的潜力,该技术取决于正确识别害虫和有益生物的能力。这是由于某些自然特征(例如物候学或农药易感性)通过IPM策略来避免有害生物的植物。具体而言,有效地应用了脱氧核糖核酸(DNA)序列信息,以鉴定某些微生物。这项技术,即DNA条形码,允许使用简短的标准化基因序列鉴定昆虫物种。DNA条形码基本上是基于可重复且可访问的技术,该技术允许物种歧视的机械化或自动化。这项技术桥接了分类生物安全差距,并符合国际植物保护公约的诊断标准,以进行昆虫识别。因此,本综述将DNA条形码作为虫害鉴定的技术及其潜在的作物保护应用。
红铃虫(Pectinophora gossypiella)对全球棉花种植构成重大威胁,造成重大经济损失和环境危害。红铃虫侵染后果严重,给棉花生产者带来沉重的经济负担。棉花产量下降和质量下降会立即带来经济损失。随着害虫管理策略的需要,负担也随之增加,需要额外投入资源和劳动力。传统的害虫管理方法依赖于化学农药,加剧了生态失衡并导致抗药性。综合害虫管理 (IPM) 等可持续替代方案通过结合针对特定情况的生物、文化和化学干预措施,提供了全面的解决方案。然而,害虫抗药性的出现需要不断创新害虫管理技术。精准农业、遥感和基因工程等新兴技术有望彻底改变害虫管理实践。这些进步使得有针对性地应用投入、早期害虫检测和开发抗性棉花品种成为可能。此外,多组学方法和基因组编辑技术为了解抗虫害的分子机制提供了见解,有助于开发抗性棉花品种。可持续害虫管理棉花育种的未来在于整合这些技术,确保棉花农业的长期可行性,同时最大限度地减少对环境的影响。