agradecer Muy诚挚地,las siguientes personas que fueron Invitadas通过Entrevistas或Comentarios Realzados en las Las版本预定了este无形:Alain Fruchette:Alain Fruchette,权利和资源启动(RRI)(RRI);亚历山德拉·本杰明(Alexandra Benjamin),蕨类植物; lambrechts,国际绿色和平组织;夏洛特·蛋白石(Charlotte Opal),earth基金会;戴维·马丁斯(Davi Martins),绿色和平组织国际; Dil Raj Khanal,尼泊尔粪便;唐纳德·莱尔(Donald Lehr),《气候土地野心与权利联盟》(Clara);大西洋学院的多琳·斯塔金斯基(Doreen Stabinsky);弗雷德里克·哈切(Frederic Hache),绿色融资天文台; Gilles Dufufasne,碳市场观察(CMW);汉娜·莫瓦特(Hannah Mowat),蕨类植物; Helen Tugendhat,《森林人民计划》(FPP);伊萨·穆尔德(Isa Mulder),CMW;乔·艾森(Joe Eisen),英国雨林基金会(RFUK);约翰尼·怀特(Johnny White),客户艺术;乔纳森·克鲁克(Jonathan Crook),CMW;凯特·霍纳(Kate Horner),独立;旧金山州立大学凯瑟琳·麦卡菲(Kathleen McAfee);凯蒂·怀特曼(Katie Wightman),美国雨林基金会(RFUS);凯利·斯通(Kelly Stone) OdaAlmåsSmith,FPP;彼得·里格斯(Peter Riggs),枢轴点;瑞秋·肯特(Rachel Kent),森林保护基金;西蒙·库塞尔(Simon Counsell),独立;南部拉希里(Southern Lahiri),印度全球森林联盟(GFC);史蒂夫·辛格(Steve Suppan),农业与贸易政策研究所(IATP);汤姆·格里菲斯(Tom Griffiths),FPP;汤姆·Youtger(Tom Youtger),FPP; TorbjørnGjefsen,挪威雨林基金会(RFN);特蕾西·奥斯本(Tracey Osborne),加利福尼亚大学,默塞德; Tyala Ifwanga,蕨; Victorine,Thoener,国际绿色和平组织; Vittoria Moretti,RFUK; Xilonem Clarke,FPP; y Otros que Prefiriron no ser nombrados。
(1) O. Saboe, P.;孔特,E.;法雷尔,M.; C.巴赞,G.; Kumar, M. 将酶连接到电极接口的仿生和仿生方法。能源与环境科学2017,10(1),14-42。 https://doi.org/10.1039/C6EE02801B。 (2) 鲁伊斯,议员;阿拉贡内斯,AC;卡马雷罗,N.;维赫纳,JG;奥尔特加,M.;佐蒂,洛杉矶;佩雷斯,R.;奎瓦斯,JC;戈罗斯蒂扎,P.; Díez-Pérez, I. 单蛋白连接的生物工程。 J. Am.化学。苏克。 2017,139(43),15337–15346。 https://doi.org/10.1021/jacs.7b06130。 (3) Fereiro, JA;Yu, X.;Pecht, I.;Sheves, M.;Cuevas, JC;Cahen, D. 隧穿解释通过蛋白质连接实现高效电子传输。PNAS 2018,115 (20),E4577–E4583。https://doi.org/10.1073/pnas.1719867115。 (4) Willner, B.;Katz, E.;Willner, I. 通过纳米技术手段实现氧化还原蛋白的电接触。Current Opinion in Biotechnology 2006,17 (6),589–596。https://doi.org/10.1016/j.copbio.2006.10.008。 (5) Heller, A. 氧化还原酶的电气布线。Acc. Chem. Res. 1990 ,23 (5),128–134。https://doi.org/10.1021/ar00173a002。(6) Boussema, F.;Gross, AJ;Hmida, F.;Ayed, B.;Majdoub, H.;Cosnier, S.;Maaref, A.;Holzinger, M. 限制在碳纳米管基质中的 Dawson 型多金属氧酸盐纳米簇可作为酶促葡萄糖生物燃料电池阳极和葡萄糖生物传感器的有效氧化还原介质。生物传感器和生物电子学 2018 ,109,20–26。 https://doi.org/10.1016/j.bios.2018.02.060。 (7) Algov, I.;Grushka, J.;Zarivach, R.;Alfonta, L. 高效黄素-腺嘌呤二核苷酸葡萄糖脱氢酶与最小细胞色素 C 结构域融合。J. Am. Chem. Soc. 2017 , 139 (48), 17217–17220。https://doi.org/10.1021/jacs.7b07011。 (8) Yan, Y.-M.;Baravik, I.;Yehezkeli, O.;Willner, I. 集成电接触葡萄糖氧化酶/碳纳米管电极用于生物电催化检测葡萄糖。J. Phys. Chem. C 2008 ,112 (46),17883–17888。https://doi.org/10.1021/jp805637e。(9) Riedel,M.;Parak,WJ;Ruff,A.;Schuhmann,W.;Lisdat,F。光作为生物催化的触发器:通过氧化还原聚合物将黄素腺嘌呤二核苷酸依赖性葡萄糖脱氢酶光子连接到量子点敏化的反蛋白石 TiO 2 结构。ACS Catal。2018 ,8 (6),5212–5220。https://doi.org/10.1021/acscatal.8b00951。(10) Zhao,F.;Conzuelo,F.;Hartmann,V.;Li,H.;Nowaczyk,MM; Plumeré,N.;Rögner,M.;
wlvos@utwente.nl 简历 Willem Vos 于 1991 年凭借其论文“高压下简单系统的相行为”以最高荣誉 (cum laude) 获得阿姆斯特丹大学物理学博士学位。他曾获得美国卡内基科学研究所地球物理实验室的著名卡内基奖学金,在那里他发现了一类在极高压下的新型范德华化合物 (1992 年《自然》论文)。随后,他转而研究光子晶体和胶体物理。他的团队首创了非常受欢迎的“反蛋白石”光子晶体 (1998 年《科学》论文 [>2100x 引用])。自 2002 年起,Vos 担任特温特大学 MESA+ 纳米技术研究所复杂光子系统 (COPS) 教授。他的团队首次展示了使用 3D 光子晶体以及随后的 3D 光子带隙控制光的自发发射。 2005 年,他获得了荷兰科学基金会 NWO 的个人 VICI 资助。Vos 是 APS 和 OSA 的研究员,曾获得法国科学院斯内利厄斯奖章和笛卡尔-惠更斯奖。Vos 的论文平均被引用 45 次以上。他的学生已成为领先机构的教职员工,或在主要行业和非营利组织中谋求职业。摘要 - 应用纳米光子学?纳米光子学应用!纳米光子学领域已经产生了各种各样令人震惊的新科学概念和新应用。由于阿贝衍射极限,透镜和显微镜等传统光学元件无法将光聚焦到深亚波长纳米尺度。但是,人们可以通过使用纳米材料(如超材料、等离子体系统和光子晶体等)仔细操纵近场衰减波,将光压缩到纳米尺度。得益于光电子学和微电子学(我们的东京同事在 3D 带隙晶体中实现微型无阈值激光器方面取得了重大进展)、太阳能电池、光谱学和显微镜学,纳米光子学正在从生物化学到电气工程和数据通信等领域得到应用。在特温特大学的应用纳米光子学 (ANP) 集群中,一个由 80 名研究人员组成的团队研究了各种主题,例如用于存储光的光子晶体、量子保护网络安全、用于芯片行业的高级镜子、复杂介质和可编程片上网络中的量子光处理,以及用于集成光子学的极其精确的微型激光器。ANP 集群是荷兰最大的纳米光子学科学家聚集地。ANP 开创了新的研究领域“波前整形”,将光聚焦在不透明介质内部或外部,并设法透过不透明屏幕!ANP 在光传播的基本原理方面提供了新的见解,并探索了新兴应用(“纳米光子学应用!”),本着特温特大学创业精神。与工业界一起,知识的发展尤其体现在自由形式光散射、光伏、用于量子信息的光子集成电路以及用于水质监测等传感方面。在简要介绍 ANP 之后,我将报告一些最近的研究亮点,包括我们与 Iwamoto 教授和 Arakawa 教授团队的持续合作。