虽然最近的空间生物学创新推动了对组织组织如何改变疾病的新见解,但以通用且可扩展的方式解释这些数据集仍然是一个挑战。用于发现组织组织中条件特定差异的计算工作流程通常依赖于成对比较或无监督的聚类。在许多情况下,这些方法在计算上是昂贵的,缺乏统计严格,并且对低流行的细胞壁细分市场不敏感,这些细胞壁细分市场仍然高度歧视和预测患者的结果。在这里,我们提出了乳蛋饼 - 一种自动化,可扩展性和统计上健壮的方法,可用于发现在空间区域,纵向样本或临床患者群体中差异富集的细胞壁细分市场。与现有方法相反,乳蛋白蛋白蛋白蛋白蛋白原将局部利基检测与可解释的统计建模相结合,使用图形邻域来检测差异富集的细胞壁细分市场,即使在较低的患病率下也是如此。在人类组织的硅模型和空间蛋白质组学成像中,我们证明了乳蛋饼可以准确地检测出少于20%的患者样品的频率为0.5%的条件特异性细胞壁细分市场,从而超过了下一个最佳方法,该方法需要患者患者的患病率为60%才能进行检测。为了验证我们的方法并了解肿瘤结构如何影响三重阴性乳腺癌(TNBC)的复发风险,我们使用蛋饼全面介绍了多中心的空间蛋白质组学群体中的肿瘤微环境,这些蛋白质组学同类群体由原发性手术切除术组成,由314例患者分析了200万个细胞,分析了500万个患者。我们发现了始终富集在肿瘤微环境的关键区域的细胞壁细分市场,包括肿瘤免疫边界和细胞外基质重塑区域,以及与患者的统计相关的壁细分市场,包括复发状态和复发性无效生存。大多数差异壁ni(74.2%)是针对未复发并形成富含肿瘤和肿瘤细胞单核细胞,巨噬细胞,APC和CD8T细胞的强大互连网络的患者。相比之下,复发的患者的相互作用网络明显稀疏,并且在B细胞,CD68巨噬细胞和中性粒细胞中富集。我们使用两个独立人群验证了这些发现,观察了相似的细胞相互作用和预测能力。总的来说,这些结果表明,生产性抗肿瘤免疫反应的显着,普遍的特征是由与肿瘤和基质细胞的先天和适应性免疫之间的结构参与网络所定义的,而不是由任何特定的细胞群体。,我们已在https://github.com/jranek/quiche中免费提供作为用户友好的开源Python软件包。