警告:•要降低火灾或电击的风险,请勿将产品暴露于雨或水分中。•不要将此设备暴露于滴或溅射中,也不要将装有液体(例如花瓶)的物体放在设备上或附近。与任何电子产品一样,请注意不要将液体溢出到系统的任何部分。液体会导致故障和/或火灾危害。•将新电池和二手电池远离儿童。不要摄入电池,化学燃烧危险。此产品提供的遥控器包含硬币/按钮电池电池。如果吞咽了硬币/But-ton电池电池,它可能会在短短2小时内引起严重的内部燃烧,并可能导致死亡。如果电池舱无法安全地关闭,请停止使用该产品并将其远离儿童。如果您认为电池可能已被吞咽或放置在身体的任何部位内,请立即进行医疗护理。如果不直接替换或不正确,可能会爆炸或造成火灾或化学燃烧。请勿在212°F(100°C)以上或焚化。仅替换为代理商批准(Ex。ul)CR2032或DL2032 3伏锂蝙蝠。迅速处理二手电池。•不要在设备上或附近放置任何裸火源,例如照明蜡烛。•为防止电击,请将线绳插头的宽叶片与AC(电源)插座的宽插槽匹配。完全插入。
提出了一种基于深层关联神经网络的鸡蛋状态智能分类的方法。此方法旨在自动孵化过程中鸡蛋产卵的可视化结果的识别和解释。关联自动编码器的模型比传统方法具有多个优点。例如,输入图像是预大尺寸的,并且对“卷积 - 汇总/UPS采样层”的计数实际上是根据图像大小来定义的,这提高了分类的准确性。此外,平面计数被确定为分隔商,将单元在输入层中的细胞计数(两者计数)对加倍对的功率计数计数“卷积 - 汇总/上取样层”,以将整个单元格保留在汇总/UPS采样后的总细胞计数。此过程将层平面的大小宽度和高度减半,使模型层的结构定义自动化。Deep Boltzmann机器模型比传统的Deep Boltzmann机器具有多个优点。这些包括预先调整输入图像,确定有限的Boltzmann机器的数量在经验上以提高分类的准确性,并将神经元设置为隐藏层中的神经元数量,因为两倍的神经元在可见层中的神经元计数,以满足Kolmogorov Theorem在多维连续函数的表现上,具有单位持续函数的持续功能的表现。此模型自动化模型层体系结构的定义。基于深层关联神经网络的鸡蛋发育状态的智能分类方法可以应用于智能系统中,以分类鸡蛋蜡烛可视化在工业家禽生产中的孵化过程中。
- 相关色温 (CCT):灯发出的光的可感知颜色,以开尔文 (K) 为单位表示。开尔文等级越低,光越“暖”或越黄;等级越高,光越“冷”或越蓝。 - 基本照明:在特定时间段内用于特定目的且该目的正在被积极实现的照明。这包括促进位置识别、公共流通、公共安全和全屏蔽安全照明所必需的照明。 - 灯具:容纳灯或灯的完整照明组件,可以包括以下全部或部分部件:外壳、安装支架或杆座、灯座、镇流器、反射器或镜子和/或折射器或透镜;也称为“灯具”。 - 英尺烛光:表示表面接收光量的测量单位。一英尺烛光是指一支蜡烛在距离一英尺的地方照射在一平方英尺的表面上产生的照度。 - 泛光灯或聚光灯:任何配有反射器或折射器将光输出集中为特定方向的定向光束的灯具或灯泡。 - 全截止:在 0° 至 90° 区域内提供 100% 总流明的灯具,在 80° 至 90° 区域内提供最多 10% 总流明的灯具。全截止灯具被认为是完全屏蔽的。见图 1。 - 完全屏蔽:以这样一种方式构造,即灯具发出的所有光,无论是直接发出的、来自灯或扩散元件的,还是通过灯具任何部分的反射或折射间接发出的,都投射到水平线以下。与全截止灯具不同,全屏蔽灯具的设计不会限制 80° 至 90° 区域的流明分布。参见图 1
2024 年和平祈祷日期:每天下午 4:00 在圣斯蒂芬教堂(29633 Munster)点燃蜡烛,纪念在国外执行任务的德国联邦国防军成员;来自德国联邦国防军作战区域的简短报告或祈祷请求的信息;歌曲、文本阅读和代祷(约 30 分钟),随后热情邀请参加舒适的聚会和交流 17.01.2024,Ev。圣斯蒂芬教堂,Zum Schützenwald 27 14.02.2024,Ev。圣斯蒂芬教堂,Zum Schützenwald 27 13.03.2024,Ev。圣斯蒂芬教堂,Zum Schützenwald 27 10.04.2024,Ev。圣斯蒂芬教堂,Zum Schützenwald 27 15.05.2024,Ev。圣斯蒂芬教堂,Zum Schützenwald 27 12.06.2024,Ev。圣斯蒂芬教堂,Zum Schützenwald 27 17.07.2024,Ev。圣斯蒂芬教堂,Zum Schützenwald 27 14.08.2024,Ev。圣斯蒂芬教堂,Zum Schützenwald 27 11.09.2024,Ev。圣斯蒂芬教堂,Zum Schützenwald 27 16.10.2024,Ev。圣斯蒂芬教堂,Zum Schützenwald 27 13.11.2024,Ev。圣斯蒂芬教堂,Zum Schützenwald 27 11.12.2024,Ev。圣斯蒂芬教堂,Zum Schützenwald 27 Ev.明斯特圣斯蒂芬努斯军事教会教区与 Ev.军事牧师团 Munster Zum Schützenwald 27 29633 Munster 电话:051192 12-1651 / 05192 12- 1802,Bw 90 2251 1651 / 1802
具体职责表。弹药和爆炸物:— 炸药和爆破剂 弹药筒,霰弹枪,已装弹 弹药筒,霰弹枪,空 炸药和类似爆炸物(枪支,单管枪,双管枪,自动和连发枪 运动火药 霰弹 熏肉和火腿 大麦豆,烤豆或其他 啤酒、麦芽酒、黑啤酒和所有其他麦芽酒 整车自行车 自行车,不带轮胎 自行车车架 靴子和鞋子:— 全部或主要由皮革制成,配有皮革或橡胶鞋底 0-3 儿童尺码:.. 3-.V-5.V „ 6-11 „ 12-13* „ 1-2.V 非儿童尺码:3-4* •5-6* 7-11 由棉、亚麻、棉缎、黄麻或大麻制成,配有皮革或橡胶,<-Aes : — O-.JV 儿童'。?i: •i-lfj 12-13" :*_4i o-ii'i ...'. '7-11 丝绸、人造丝或缎子制成,皮革鞋底:2—3 儿童以外*尺码:5V-S 足球鞋麸皮砖和瓷砖(不包括耐火砖、釉面砖和地砖)普通扫帚金银条普通黄油细黄油,餐桌蜡烛......水泥......奶酪:— Kachkaval。rouioum 和其他 -imi。'.i'* 种其他,即格鲁耶尔奶酪。荷兰奶酪,切达奶酪。柴郡奶酪。斯蒂尔顿奶酪,戈尔贡佐拉奶酪。帕尔马干酪。洛克福奶酪。布里奶酪。等及其仿制品 苹果酒 煤 可可和菊苣 - 生咖啡 - 烘焙或研磨的咖啡 铜片、铜底、铜条和铜钉 绳索、绳子和麻线 葡萄干 干鱼、盐渍鱼或腌鱼 面粉,小麦粉。包括粗粒小麦粉和压碎和研磨的小麦
图1(续)新型合并PN轴突侧支的例子。(c)腹侧轴突侧支从同侧的主轴突从背侧的轴突穿过laminaX。(d)越过中线后对侧轴突对侧的侧支分支。(e)显微照片显示了来自面板D的盒子区,那里的侧支分支来自中央运河下方的主轴子。(f)对齐层I的重建与紧凑的略微不对称的轴突,主导细胞的侧面。(g)薄片I与以soma为中心的更稀疏,更对称的轴突。请注意,在这两种情况下(F,G),轴突主要占据laminae I – II。(h)用横向位置的重建,并带有复发轴突,该轴突还填充了DH的内侧方面。(i)显微照片显示背侧跨越较低的侧支,该侧支以垂直的,类似蜡烛的方式从高阶轴突分支。请注意,对于所有对齐的重建,脊髓,灰质和中央运河轮廓都是从包含躯体的部分中取出的;因此,遥远部分中的某些过程似乎可能落在轮廓的边界之外。轮廓的不规则性是由于在组织学过程中发生收缩和扭曲后对截面轮廓的忠实表示。箭头,在ins中的pns/下阶分支中的轴突侧支;箭头,PNS/高级分支中的主轴突;虚线,灰质的边界向背funiculus。比例尺:重建中的250 µm;面板E中的50 µm;面板中100 µm。索马和树突为蓝色,在所有重建中,轴突均为橙色。
在OVO研究中,进行了一项关于核苷(25、50和100 mg/egg)对孵化力,生长性能,能量可分配性和肠形态的核苷作用的影响的研究。将四百八十(480)个肥卵分为四组(四个重复分别有30个卵)。在鸡蛋孵化的第18天,进行蜡烛,并选择了肥沃的鸡蛋,并给出了OVO管理中的四个。第一组用作对照,并注入了磷酸盐缓冲盐水(PBS)。其他组在100 µL的OVO给药(25、50和100 mg/eg)的OVO给药中通过蛋黄囊途径给出,并孵化了各个组的小鸡。在实验组中,孵化力是可比的。然而,在以100 mg/eg的形式注射较高水平的核苷的组中,孵化力受到影响。从更高剂量的核苷(50和100 mg)中孵化的小鸡的体重(BW)高(p <0.05)。在注入核苷的组中观察到较高的能量代谢性(%)。血浆蛋白浓度较高,用于核苷(50和100 mg)的组中。在组织学上,肠绒毛长度在100 mg注射组中最大,然后是50 mg和25 mg。在3、7和14天大的所有注射组中,在空肠中同型(CDX)的相对表达显着(P <0.05)。核苷辅助组具有更好的性能,能量代谢性和肠形态。在实验组中,以50 mg/卵的核苷施用导致肉鸡较高的生长性能,血浆蛋白,肠表面和绒毛发育。
SIA关键信息 - 2025年1月一般福利和福利•现代炉子(例如符合生态设计的模型)当与正确调味的可持续木材燃料一起使用时,是一种高效的加热方法,具有低颗粒和碳排放。这些炉子可以提供一种具有成本效益的方式来加热您家中的主要居住空间,并可以在整个物业的其余部分提供辐射的温暖。•现代炉子在提供空间加热和减少冷凝水方面非常有效,有助于减轻霉菌和潮湿,这可能对较旧的特性特别有益。•真正的火力可以帮助促进温暖和安全感,为整个家庭提供了一个焦点,并可能促进精神上的福祉。在对制造商Charnwood进行的1,227个炉灶使用者的调查中,有93%的人报告说,他们的炉子对他们的健康有积极的影响,因为它有助于改善自己的情绪,帮助放松身心并营造一个家常的氛围。资料来源:Charnwood Grid Indpendence&Outer Security•使用现代的燃木炉子作为当地(次要的)空间供暖设备在您的物业中确保您始终可以加热您的房屋,并享受能源网络的独立性,并减少对化石燃料的使用。•拥有现代燃木炉灶提供了一种金融垫子,可抵抗波动的汽油,电力和石油价格。•与支付主要供暖费用所需的直接借方或预付款表不同,供应木材(或其他可持续的固体燃料)意味着您的加热是“购买和支付的”,您可以准确地衡量您使用多少用于保持温暖的数量。颗粒物和空气质量•许多日常的人类活动会产生颗粒物,这可能会对房屋外部和内部的空气质量产生负面影响。这些活动包括道路,铁路和航空运输,农业和农业,制造业和工业,包括固体燃料炉子和壁炉在内的家庭供暖,烟花,炸或烧烤食品,篝火,篝火,披萨烤箱,燃烧的蜡烛,使用空气
海尔布隆(德国)/库尼巴(澳大利亚),2024 年 5 月 3 日——德国公司首次实现了商业上可行的运载火箭的“升空”。在澳大利亚库尼巴发射场,德国卫星运输商用运载火箭制造商和系统提供商 HyImpulse 成功试射了长 12 米、重 2.5 吨的单级火箭“SR75”,该火箭可将重达 250 公斤的小型卫星运送到约 250 公里的高度。美国中部标准时间下午 14:40 或欧洲中部时间上午 7:10,运载火箭成功升空,运载火箭的混合火箭推进系统按计划运行。成功升空后,SR75 将被回收以进一步检查和分析数据。 HyImpulse 的火箭采用了一种突破性的推进概念,利用固体石蜡(俗称蜡烛)和液氧作为燃料。石蜡既经济高效,又是一种安全的燃料,可替代传统的液体或固体燃料,而且没有爆炸风险。这种创新设计大大简化了运载火箭的建造,与传统推进系统相比,成本降低了 40%。因此,卫星运输费用降低了 50%,这充分表明了 HyImpulse 致力于以可承受的价格进入太空的承诺。 HyImpulse 联合创始人兼联合首席执行官 Mario Kobald 博士表示:“在如此高效的团队和相对较少的预算下,打造出一款配备全新推进技术的商业运载火箭,并投入发射和升空,这可谓一项壮举。我们展示了德国作为航天大国的实力,并扩大了欧洲的太空准入。目前,我们正计划在明年年底前发射一款更大的多级运输运载火箭,该火箭能够将重达 600 公斤的卫星部署到低地球轨道。” HyImpulse 联合创始人兼联合首席执行官 Christian Schmierer 博士表示:“此次成功发射也为我们提供了宝贵的进一步开发数据,我们验证了我们的技术概念并展示了我们的市场准备情况。我们的利用概念旨在以经济高效的方式将小型卫星运送到太空。这使得实施
这是“天体物理学讲义和论文”系列的第三卷。该系列从 2004 年开始每半年出版一次,旨在为专业界提供西班牙天体物理学研究进展的领先集合,这些集合以西班牙皇家物理学会 (RSEF) 每两年一次的会议上天体物理学研讨会上发表的精选演讲为基础。特别是,本卷包含了受邀评论(讲义)和第三届天体物理学研讨会的选集(论文),该研讨会于 2007 年 9 月在格拉纳达大学科学学院举行的第 31 届 RSEF 科学会议期间举行。本书突出介绍了西班牙天体物理学家对行星学、太阳和恒星物理学、河外天文学、宇宙学和天文仪器的一些重要贡献。在几十年没有专门的任务之后,金星再次受到关注。一方面,Ricardo Hueso 及其同事和 Miguel ´ Angel L´opez-Valverde 回顾了 ESA 金星快车对了解邻近行星大气层的贡献。Carme Jordi 在一篇综合论文中描述了用于确定恒星质量、半径、温度、化学成分和光度的主要观测校准技术和方法。垂死恒星对于理解暗能量的性质至关重要,这可能是当今物理学中最基本的问题。Ia 型超新星在十年前显示宇宙膨胀速度加速方面发挥了根本性作用。Inma Dom´ınguez 及其同事详细介绍了热核超新星爆炸的基本物理知识如何影响它们作为天体物理蜡烛的作用。Isabel M´arquez 和 Eduardo Battaner 分别回顾了星系环境对星系活动的影响以及星系中磁场的特性。加那利大望远镜 (GTC) 的首次亮相是 Francisco S´anchez 的评论主题,他是这项如今已成为现实的事业的倡导者。机器人天文学不是未来,而是全球多台望远镜实现的现实,其中一些在西班牙。Alberto Castro-Tirado 介绍了其中一些仪器及其在探测和跟踪 GRB 中的作用。还有更多。代表 RSEF 天体物理学小组,与前几卷一样,编辑们希望这本书能激发人们对天文学的兴趣,尤其是 2009 年是国际天文学年。编辑们感谢西班牙科学和创新部通过拨款 AYA-2007-28639-E 和 FEDER 基金提供的资金支持。本书是在西班牙皇家物理学会 (RSEF) 的赞助下编辑的。