背景:追踪海洋鸟类和蝙蝠的活动仍然是了解太平洋 OCS 海上能源开发对野生动物的潜在影响的关键挑战。众所周知,蝙蝠和鸟类在迁徙期间会飞到海上,历史上经常有蝙蝠飞到离岸 20 多英里的记录。包括红瓣蹼鹬、红颈瓣蹼鹬和红腹滨鹬在内的滨鸟也在春季和秋季迁徙到海上,但缺乏有关迁徙时间和地点的信息。海洋鸟类也会随季节重新分布,人们对繁殖后的扩散和重要的种群特定越冬地点知之甚少。更多有关运动生态学的信息将有利于全面评估海上能源项目的影响。
在国家公园和野生动物服务局和北爱尔兰环境局的资助下,野生动植物游骑兵和数百名公民科学家的帮助。我们培训志愿者,以便他们在一年中的同一时间以相同的方式进行调查。监测通常涉及计算蝙蝠在晚上从栖息处出来时,或沿着已知的路线行走/行驶,并使用称为BAT探测器的设备来计算沿该样带的蝙蝠数量。然后,我们对数据进行详细的统计分析,以确保结果准确。
背景:已知多种蝙蝠物种季节性地出现在近海,并且已记录到距离海岸线 805 公里(500 英里)的地方(Pelletier 等人,2013 年;Griffin,1940 年)。然而,对近海蝙蝠活动的直接研究仅发生在新英格兰、中大西洋海岸和五大湖地区的零散地点。这些工作部分由能源部支持,涉及在各种偏远的沿海和近海环境中持续三年部署声学蝙蝠探测器,包括近海岛屿、航行结构、IOOS 浮标和 NOAA 研究船(Peterson 等人,2016 年)。这项研究产生了大量有关迁徙和非迁徙蝙蝠物种的时间和空间活动的新信息,并为联邦/州资源机构和开发商提供了评估与海上风能开发相关的死亡风险的关键指标。长距离迁徙物种,如霜毛蝠(Lasiurus cinereus)、东部红蝙蝠(L. borealis)和银毛蝙蝠(Lasionycteris)
特罗布里奇蝙蝠缓解策略 – 摘要文件简介 本文件旨在为评估特罗布里奇及其周边开发项目的人士提供特罗布里奇蝙蝠缓解策略 (TBMS) 的简易指南。它总结了 TBMS 中与每个开发阶段相关部分的内容,并提供了指示。本文件仅供参考,不能替代 TBMS。有关详细信息,请继续阅读 TBMS,该策略可在威尔特郡议会网站 - 威尔特郡住房场地分配计划 上找到。特罗布里奇周围的景观是三种稀有蝙蝠的家园,它们在功能上与保护区巴斯和埃文河畔布拉德福德特别保护区 (SAC) 有关。TBMS 的实施将确保威尔特郡住房场地分配计划 (WHSAP) 中分配的新住房符合法律规定。本文件分为三个部分:
生态与生物多样性系,生命科学学院,安德烈斯·贝洛大学,圣地亚哥,智利B生物多样性研究所,动物健康与比较医学,格拉斯哥大学医学兽医和生命科学学院Iologie,蒙彼利埃,法国和Mivegec的Iologie,IRD,CNRS,CNRS,MONTPELLIER,法国蒙彼利埃大学,劳动力Mixte International,Drisa,IRD,IRD用于细菌耐药性合作研究的千年核,Microb-R,Santiago,智利和实验室服务HôpitaldelaMère等人,N'djaména,N'djaména,Chad J A,Lima,Lima,Peru K MRC,秘鲁K MRC - 格拉斯哥大学病毒研究中心,英国格拉斯哥大学,格拉斯哥大学,英国,格拉斯哥大学
摘要:我们对 2018-2019 年提交给康涅狄格州兽医诊断实验室 (CVMDL) 的蝙蝠中检测到的狂犬病毒 (RABV) 进行了全基因组测序和遗传表征。在提交给 CVMDL 的 88 只蝙蝠中,6 个脑样本(6.8%,95% 置信区间:1.6% 至 12.1%)经直接荧光抗体试验检测呈阳性。在棕蝠 (Eptesicus fuscus, n = 4)、灰毛蝠 (Lasiurus cinereus, n = 1) 和未知蝙蝠物种 (n = 1) 中检测到了 RABV。获得了六种检测到的 RABV 中的四种的完整编码序列。在系统发育分析中,大棕蝠的 RABV(18-62、18-4347 和 19-2274)属于蝙蝠 EF-E1 进化枝,与在宾夕法尼亚州和新泽西州从同种蝙蝠中检测到的 RABV 聚类。从迁徙灰毛蝠中检测到的蝙蝠 RABV(19-2898)属于蝙蝠 LC 进化枝,与在亚利桑那州、华盛顿州、爱达荷州和田纳西州从同种蝙蝠中检测到的 11 种病毒聚类。本研究中使用的方法产生了有关 RABV 变体遗传关系的新数据,包括它们的宿主和空间起源,这些数据将作为未来在北美研究 RABV 的参考数据。需要对蝙蝠 RABV 进行持续监测和基因组测序,以监测病毒的进化和传播,并评估可能与公共卫生相关的基因突变的出现。
向相关部门报告泄漏情况:EMD、诺克斯堡消防局、911 和靶场控制中心(如果在靶场)。确保更换、重新填充并清点您的工具包。对于水上泄漏,应将栅栏放置在泄漏源的下游。放置时应留出足够的空间,以使其自由漂浮,并让液体聚集在栅栏后面。您还可以将栅栏放置在与水流略微倾斜的位置,以帮助将液体引导至恢复区域。护套或栅栏末端应与泄漏流内侧重叠约 4 英寸至 6 英寸。当液体流量大或地形不平坦或倾斜时,您可能需要多层护套或栅栏来形成有效的屏障。
建设将在2023年第四季度或之前结束大约15到20个月。调试后,该项目将进入运营阶段。该网站上的太阳能模块每周365天,在白天7天。项目现场的操作活动将包括太阳能模块洗涤;植被,杂草和害虫管理;安全性,设施的维护,基于受监视的数据(包括系统输出和其他关键性能指标的实际公差与预期公差)响应自动化的电子警报,并与客户,传输系统运营商以及其他参与设施操作的实体进行通信。在开发计划中可以找到完整的项目描述,包括组件,建筑活动以及运营和维护。
在使用自我产生的信号的如此称为活跃的传感器中,声纳传感器的实现比LIDAR和雷达更具挑战性,部分原因是它们有限的角度传感场。对此挑战的一种常见解决方案是扫描传感器,该传感器通过连续测量扫描角度范围。然而,扫描传感器对声纳特别概率,因为声速相对较慢和声纳头的惯性。对蝙蝠行为的研究表明,蝙蝠可以在小组飞行过程中窃听其特异性。换句话说,他们将自己的活跃声纳收集的信息与他们通过被动倾听同龄人收到的信息融合在一起。由于蝙蝠非常擅长使用声纳,因此这种行为激发了对融合积极和被动声纳是否可以解决实现声纳传感器的挑战的调查。定义了融合传感的模型,并使用数值模拟来回答同时定位和映射的测试床问题(SLAM)。模拟结果表明,当活动声纳和相关噪声的角度范围相对较小时,机器人在解决大满贯方面的性能就会得到改善。
摘要 在生物多样性持续受到侵蚀的背景下,获取野生动物的基因组资源对于保护至关重要。每年数以千计的哺乳动物被路毙的动物为基因组调查提供了有用的素材。为了说明这种未充分利用资源的潜力,我们使用了路毙的动物样本来研究大耳狐 (Otocyon megalotis) 和土狼 (Proteles cristatus) 的基因组多样性,这两种动物的亚种在东部和南部非洲都有相似的不连续分布。首先,我们结合 Nanopore 长读和 Illumina 短读获得了具有高连续性和基因完整性的参考基因组。然后,我们通过使用仅基于少数重新测序个体的新遗传分化指数 (GDI) 将它们的全基因组遗传分化与食肉目中定义明确的物种进行比较,表明土狼的两个亚种 (P. cristatus 和 P. septentrionalis) 可能值得拥有物种地位。最后,我们获得了包括新土狼物种在内的基因组规模的食肉目系统发育。