我们使用两种互补视觉方式探索视觉增强学习(RL):基于框架的RGB凸轮和基于事件的动态视觉传感器(DVS)。iSTING多模式视觉RL方法在有效提取与任务相关的信息时经常遇到挑战。为了解决这个问题,我们提出了用于视觉RL的分解多模式表示(DMR)框架。它将输入分为三个不同的组成部分:与任务相关的效果(共同功能),RGB特异性噪声和DVS特异性噪声。共同创作表示与RL任务相关的两种模式中的完整信息;这两个噪声组件都受到数据重构损失以避免信息泄漏的约束,与共同创作形成对比,以最大程度地差异。广泛的经验表明,通过明确分开不同信息的类型,我们的方法可实现与最先进的方法相比,实质性改善的政策绩效。
©作者2021。由牛津大学出版社代表分子生物学与进化学会出版。这是根据Creative Commons Attribution许可条款(http://creativecommons.org/licenses/4.0/)分发的一篇开放访问文章,该文章允许在任何媒介中不受限制地重复使用,分发和再现,前提是适当地引用了原始工作。
理查德·a·比辛格是新加坡拉惹勒南国际关系学院军事转型项目客座高级研究员。他的工作重点是亚太地区的安全和防务问题,包括军事现代化和部队转型、地区国防工业和地方军备生产以及武器扩散。比辛格先生撰写过多部专著和书籍章节,他的文章发表在《国际安全》、《Orbis》、《中国季刊》和《生存》等期刊上。他是《武装亚洲:技术民族主义及其对地方国防工业的影响》(2017 年)一书的作者,也是《亚太新兴关键技术与安全》(2016 年)一书的编辑。他的联系方式:。
•与其他治疗方法相比,它的工作效果如何?•风险或副作用是什么?它们的可能性有多大?•治疗将如何影响我的日常生活?•如果治疗不起作用会发生什么?•如果我不想接受治疗会发生什么?是否还有其他治疗
在本文中,我们提出了RSTAB,这是视频稳定框架的新型框架,该框架通过音量渲染整合了3D多帧融合。与传统方法背道而驰,我们引入了一个3D多框架透视图,以进行稳定的图像,从而解决了全框架生成的挑战,同时保存结构。我们的RSTAB框架的核心在于S Tabilized R Endering(SR),该卷渲染模块,在3D空间中融合了多帧信息。具体来说,SR涉及通过投影从多个帧中旋转的特征和颜色,将它们融合到描述符中以呈现稳定的图像。然而,扭曲的信息的精度取决于降低的准确性,这是受染色体区域显着影响的因素。为了响应,我们介绍了a daptive r ay r ange(arr)模块以整合深度先验,并自适应地定义了投影过程的采样范围。在方面上,我们提出了以光流的光流限制的限制,以进行精确的颜色,以实现精确的颜色。多亏了这三个模块,我们的rstab示例表现出了卓越的性能,与以前的视野(FOV),图像质量和视频稳定性相比,各种数据集的稳定器相比。
这篇观点文章深入研究了阴阳理论的新颖融合 - 一个古代中国哲学基石 - 与复杂的免疫学领域。鉴于免疫学固有的复杂概念,许多学生发现理解有关免疫平衡和调节的微妙机制具有挑战性。鉴于中国学生对阴阳理论的深刻理解,我们主张采取一种教育策略,该策略将Yin-Yang框架内的免疫平衡概念背景而来,从而提供了更直观和引人入胜的学习经验。这种方法不仅利用了阳阳的文化意义,而且还对应于其平衡和和谐的原理,从而反映了免疫反应的稳态本质。本文批判性地评估了该技术在中国学生中增强免疫理解的能力,同时也考虑了其局限性。尽管存在这些局限性,但这些看似不同的领域的融合仍然具有增强免疫学教育,促进批判性思维和推进跨文化学术话语的实质性希望。古老的哲学见解与现代科学探索的融合促使免疫学内的教育方法进行了重新评估,强调了一种新颖的教学方法,该方法将传统智慧与当代科学教育联系起来。
适应性免疫通过调节抗原特异性反应,炎症信号传导和抗体产生,在动脉粥样硬化的发病机理中起着重要作用。但是,随着年龄的增长,我们的免疫系统经历了逐渐的功能下降,这种现象称为“免疫衰老”。这种下降的特征是增生性幼稚的B和T细胞的减少,B和T细胞受体库库减少,以及相关的分泌性分泌性疾病。此外,衰老会影响生发中心的反应,并恶化次级淋巴器官功能和结构,从而导致T-B细胞动力学受损并增加自身抗体的产生。在这篇综述中,我们将剖析衰老对适应性免疫的影响以及与年龄相关的B-和T细胞在动脉粥样硬化发病机理中所起的作用,强调需要针对与年龄相关的免疫功能障碍的干预措施,以减少心血管疾病风险。
摘要。朦胧的图像带来了一个具有挑战性的问题,由于信息丢失和颜色失真而遭受。当前的基于深度学习的去悬式方法通过增加网络深度来增强性能,但会导致大量参数开销。同时,标准卷积层集中在低频细节上,通常会说出高频信息,这阻碍了模糊图像中提出的先前信息的有效利用。在本文中,我们提出了TCL-NET,这是一个轻巧的飞行网络,该网络强调了频域特征。我们的网络首先包含一个用于提取高频和低频内形式的所谓层,该层是针对原始模糊图像的快速变压器专门设计的。同时,我们设计了一个频率域信息融合模块,该模块将高频和低频信息与后续卷积层的卷积网络作品集成在一起。此外,为了更好地利用原始图像的空间信息,我们引入了一个多角度注意模块。使用上述设计,我们的网络以仅0.48MB的总参数大小实现了出色的性能,与其他最先进的轻量级网络相比,参数的数量级降低了。