量子断层扫描已成为计算物理学中量子系统密度矩阵 ρ 的必不可少的工具。最近,它作为测试高能粒子物理学中纠缠和违反贝尔不等式的基本步骤,变得越来越重要。在这项工作中,我们提出了重建一般散射过程的螺旋量子初始状态的理论框架。具体而言,我们对不可约张量算子 f TLM g 执行 ρ 的展开,并通过在适当选择的 Wigner D 矩阵权重下对最终粒子的角度分布数据进行平均来唯一计算相应的系数。此外,我们还提供了生产矩阵 Γ 的新广义和散射的归一化微分截面的显式角度依赖性。最后,我们使用 Weyl-Wigner-Moyal 形式从量子信息的角度重新推导了我们之前的所有结果,此外,我们还获得了 Wigner P 和 Q 符号的简单解析表达式。
具有双自由基特征的多环芳杂环 (PAH) 的分子拓扑合成源于分子内偶联的突破。在此,我们报道了选择性 Mn(III)/Cu(II) 介导的 C − P 和 C − H 键断裂,以获得具有螺旋或平面几何形状和不同阳离子电荷的坚固的供体稠合磷鎓。前一种螺旋结构包含一个共同的磷酸[5]螺旋化受体和不同的芳胺供体,而后一种平面结构包含一个磷酸[6]螺旋化和相同的供体。这些前所未有的供体-受体 (D − A) 对表现出独特的拓扑依赖性光电特性。折叠螺旋自由基中心具有极端的电子缺陷状态和空间隔离,具有高度的双自由基特性 (y 0 = 0.989)。此外,巧妙的电荷转移 (CT) 和局部激发 (LE) 跃迁成分促进了不同溶剂中不同的杂化局部和电荷转移 (HLCT),赋予了 0.78 eV (~217 nm) 的最大发射带隙变化。阳离子发射也可以通过拓扑定制和极性依赖的 HLCT 从蓝色区域调整到近红外区域,这可以在兼容的手性薄荷醇基质中输出额外的圆偏振发光,同时提高量子效率并保留深红色辉光。值得一提的是,原子精确的 Mn(III) 卤化物已被史无前例地捕获并确定用于 C-P 键活化。
Cα HN N C' Cβ 无偏 Tau-5 R2_R3 MD 集合 RMSD (ppm) 0.47 0.23 1.06 0.45 0.37 相关性 0.991 -0.558 0.954 0.915 1.000 Cα 重加权最大熵 Tau-5 R2_R3 集合 RMSD (ppm) 0.29 0.21 0.88 0.38 0.33 相关性 0.997 -0.312 0.968 0.934 1.000 表 1. 使用 a99SB- disp 力场对 Tau-5 R2_R3 进行 74μs 无偏 REST2 MD 模拟的 300K 副本以及最大熵计算和实验 NMR 化学位移之间的一致性使用 Cα NMR 化学位移作为约束得出的重加权集合。化学位移使用 SPARTA+ 57 计算。EPI-7170 对 Tau-5 R2_R3 的亲和力高于 EPI-002。
相邻芳香核之间的相互作用通常会导致螺旋结构,并由于轨道重叠的变化而影响沿柱状堆栈的电荷载流子传输。4 因此,PAH 中 p 堆积和氢键的充分结合使我们能够在很宽的温度范围内建立所需的液晶结构。PAH 的一个特例是萘嵌苯,它由近稠合萘组成。5 最突出的分子体系是苝四羧基二酰亚胺 (PDI),它根据其取代基和功能团组装成不同的螺旋结构。6 取代基通常以对称方式连接在 PDI 核心的两个酰亚胺位置上,并提供例如分子间氢键和 p 堆积相互作用。对于 PDI 1 螺旋纳米纤维,由于相邻分子的酰胺基团之间的氢键而组装(图 1)。 7 纤维的螺旋节距为几十纳米,这归因于定向氢键。两个酰亚胺位置上具有高空间需求的取代基也用于控制分子堆积。PDI 2 的树枝状基团刺激分子的横向旋转,并根据 PDI 核心和树枝状基元之间柔性间隔物的长度诱导复杂的螺旋柱状组织。螺旋柱可以包含 PDI 四聚体作为基本重复单元,这些四聚体基于每个层中并排的两个分子。8 在另一个