获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
摘要:深度学习 (DL) 算法在无损评估 (NDE) 中的应用正成为该领域最有吸引力的主题之一。作为对此类研究的贡献,本研究旨在研究 DL 算法在使用激光超声技术检测和评估螺栓接头松动度方面的应用。本研究基于关于螺栓头板真实接触面积与超声波穿过时损失的导波能量之间关系的假设进行。首先,分别使用 Q 开关 Nd:YAG 脉冲激光器和声发射传感器作为激励和感应超声信号。然后,使用超声波传播成像 (UWPI) 过程创建 3D 全场超声数据集,之后应用多种信号处理技术来生成处理后的数据。通过使用基于 VGG 类架构的回归模型的深度卷积神经网络 (DCNN),计算估计误差以比较 DCNN 在不同处理数据集上的性能。还将所提出的方法与 K 最近邻、支持向量回归和深度人工神经网络进行了比较,以证明其稳健性。因此,发现所提出的方法显示出结合激光生成的超声波和 DL 算法的潜力。此外,信号处理技术已被证明对自动松动估计的 DL 性能具有重要影响。