摘要:基于视频的外围氧饱和度(SPO2)估计,仅利用RGB摄像机,提供了一种非接触式方法来测量血氧水平。先前的研究将稳定且不变的环境设定为非接触式血氧估计的前提。此外,他们还利用了少量标记的数据进行系统培训和学习。但是,使用小数据集训练最佳模型参数是一项挑战。血氧检测的准确性很容易受到环境光和受试者运动的影响。为了解决这些问题,本文提出了一个对比度学习时空注意网络(CL-SPO2NET),这是一个用于基于视频的SPO2估计的创新的半监督网络。在包含面部或手部区域的视频段中发现了远程光绘画(RPPG)信号中的时空相似性。随后,将深层神经网络与机器学习专业知识相结合,从而估算了SPO2。在小规模标记的数据集的情况下,该方法具有良好的可行性,在稳定的环境中,摄像机和参考脉冲血氧仪之间的平均绝对误差为0.85%,在面部旋转情况下具有1.13%的照明频率为1.13%。
通过便携式仪器持续监测心血管疾病的早期诊断对心脏呼吸信号的持续监测,人们对光杀解物学(PPG)的兴趣越来越越来越大。In this context, it is conceivable that PPG sensors working at different wavelengths simultaneously can optimize the identi fi cation of apneas and the quanti fi cation of the associated heart-rate changes or other parameters that depend on the PPG shape (e.g., systematic vascular resistance and pressure), when evaluating the severity of breathing disorders during sleep and in general for health monitoring.因此,这项工作的目的是提出一种新型的脉搏血氧仪,该脉冲血氧仪在传输模式下提供了与三个光波长(绿色,红色和红外线)相关的同步数据记录,以优化心率测量以及对氧饱和度的可靠且连续评估。传输模式在运动伪影中被认为比反射模式更健壮,但是由于该波长在该波长处的身体组织吸光度很高,因此电流脉搏血氧仪无法在传输模式下采用绿光。出于这个原因,我们的设备基于单光雪崩二极管(SPAD),其死亡时间很短(少于1 ns),同时具有单个光子灵敏度和高计率,允许在同一站点和传输模式下获取所有利率的所有利率。先前的研究表明,SPAD摄像机可用于通过远程PPG测量心率,但是到目前为止,从未解决过基于接触SPAD的PPG传感器通过接触SPAD的PPG传感器进行的氧饱和度和心率测量。对六名健康志愿者进行初步验证的结果反映了预期的生理现象,从而在小于70 ms的间隔间隔估计中提供了RMS误差(带有绿光),氧气饱和度的最大误差小于1%的氧气饱和度小于1%。我们的原型展示了基于SPAD的设备的可靠性,用于连续长期监测心脏响应变量,以替代光电二极管的替代方案,尤其是在需要最小的面积和光学功率时。
表面和地下水处理是指用于净化从河流,湖泊,水库和地下水井的过程和方法。这些治疗方法清除了水中的杂质,污染物和不良物质,因此成品质量符合政府和行业标准。
高温超导体由于其独特的电子特性和非常规的超导行为而引起了极大的关注。尤其是,由高能离子植入,压力和电磁场等外部场引起的高体性超导材料的相变已成为研究热点。但是,潜在的机械主义尚未完全理解。第一原理计算被广泛认为是深入探索这些内在机制的有效方法。在这项研究中,使用第一原理计算来研究氧空位现象对不同功能下YBA 2 Cu 3 O 7(YBCO 7)的电子传递性能和超导性能的影响(PBE,PBE + U,HSE06)。结果表明,氧空位显着改变了带的结构,并且在不同功能的预测中观察到了考虑的差异。YBA 2 Cu 3 O 6(YBCO 6)的计算带隙范围为0至1.69 eV。较大的带隙表明是绝缘状态,而没有带隙的缺乏表明材料保持金属。通过将结果与实验结果进行比较,我们发现HSE06功能提供了最合理的预测。带隙的存在或不存在主要受铜轨道的影响。氧气空位会导致材料的C轴拉长,这与实验中He-ion辐照后X射线差异(XRD)分析中观察到的趋势是一致的。我们的发现有助于解释在外部田地下,尤其是He-Ion Irra-priation的金属 - 绝缘体相变,并为开发高温超导材料及其设备应用提供了理论基础和新见解。
摘要 — 本研究提出了一种生命体征监测界面,结合了可拉伸运动机能学胶带上的心电图 (ECG) 和反射光电容积描记法 (PPG) 采集。集成的纺织带不易出现电极错位,并可通过干电极提供高质量的诊断 ECG 信号。通过锁骨下动脉测量的反射 PPG 用于跟踪血氧饱和度,与 ECG 结合,可以确定脉搏传导时间和推断血压。这种多模式界面改善了临床工作流程,因为它易于佩戴、减少运动伪影,并在紧急情况下有助于更高效、更准确地诊断。索引词 — 心电图、脉搏血氧仪、血压、可拉伸电子产品
摘要:当今世界,数字医疗仪器对于快速、准确的诊断至关重要。通过将多种功能组合到单个设备中,可以更经济地提供医疗保健,并提供更好的患者护理和医疗效率。该项目描述了一种具有集成血氧仪传感器和声音传感器的经济高效的数字听诊器的开发。听诊器有助于同时监测 spO2(外周氧饱和度)水平和心脏活动。声音传感器将心音转换为电信号,从而能够检测心脏功能异常。这些生命体征的实时数据被传输到将部署在医生手机上的 Web 应用程序中,使他们能够立即访问患者信息。这种创新设备为患者和医护人员提供了一种二合一解决方案,既高效又经济实惠。关键词:听诊器、SpO2、心脏功能、Web 应用程序、监测。简介 监测和聆听心脏和肺部活动对于识别任何异常或与先前列出的两个器官相关的任何疾病的开始至关重要(美国肺脏协会,nd)。在快速发展的医疗领域,对多功能且特别是低成本设备的需求不断增加。集成血氧仪功能的数字听诊器的开发是该领域的一项重大进步。建议的 Multi-Beat 数字听诊器不仅简化了监测 spO2 和心脏活动水平的过程,而且还以非常实惠的成本提高了诊断的速度和可靠性。将此设备链接到可通过医生的智能手机或 PC(个人电脑)访问的移动网络应用程序,将依靠实时图表和高精度数值平滑任何异常视觉识别,即使通过听诊器听到不显眼的声音也是如此。 目标 该项目的目标是创建一种集成血氧仪功能的数字听诊器,以改善对患者的监测和诊断。该项目旨在通过将这些基本任务集成到一个价格实惠的小工具中来简化生命体征评估。这将使医护人员能够更有效地识别和治疗医疗问题。这款尖端工具将提供可通过移动应用程序访问的实时数据,从而促进更快、更明智的医疗选择,以改善患者护理。
衡量脉搏氧饱和的系统是基于有关氧气和脱氧 - 脱氧蛋白状态的血液流量特征的两个想法。氧和脱氧 - 血红蛋白对红色和红外光的吸收彼此不同,组织中动脉血的体积随着每种心跳而异(Torp和Modi,2022)。使用脉搏血氧仪的使用是安全的,并且通常耐受。手指或脚趾甲床是最常使用的组织床。由于动脉饱和是医生最关心的,因此该机器的算法在动脉/毛细管组织床中搜索非常微小的动脉搏动。因此,在灌注不足或四肢运动不足的个体中,可能难以获得一个可靠的信号。在某些情况下,额头和耳垂(Agashe,2006年),鼻腔或嘴唇等其他应用位置已成功使用。
用智能超声技术代替高压涡轮机仪表现在从未如此简单。最后,可以实现气体网格的数字化和现代化的下一步。flowsic550添加了Digital Connectiv-Ity,具有RS485 Modbus和自我诊断功能,可实现远程访问和基于条件的维护。这节省了运营工作并增加了测量的可用性并减少了未算出气体(LAUF)的损失。flowsic550在现有装置中可以更换机械高压气流仪的1:1。
厄瓜多尔约有 215,156 人患有肢体残疾,其中近一半的残疾率在 30% 至 49% 之间,相当一部分人没有肢体。此外,截肢病例激增,这一趋势与糖尿病患病率上升有关,根据国际糖尿病联合会 (IDF) 的数据,到 2021 年,糖尿病患病率预计将达到 5.37 亿。虽然存在假肢解决方案,但它们可能会产生高昂的成本或限制运动,即使价格更实惠。因此,提出了一种替代方案:肌电上肢假肢。这种假肢将通过肌电图和脉搏血氧饱和度信号进行操控,利用人工智能方法。采用多层神经网络模型,该模型由一个输入层、四个隐藏层和一个输出层组成,对用户运动意图的预测准确率高达 93%。对于 AI 模型训练,记录并仔细检查了来自 EMG 和 PPG 传感器的数据,从而将类别从四个压缩为三个。该模型嵌入在 ESP32 C3 DevKit-M1 开发板中,开源蓝图促进了假肢的创建,并辅以用于电子集成的补充组件。该模型在预测类别方面达到了 93% 的准确率,而假肢的续航时间约为三个小时,售价 295 美元,可处理各种轻量级物体。
设置菜单保留“ Down▼”按钮约5秒钟以输入设置菜单。使用▲或向下▼按钮选择适当的设置。在菜单设置中,按住“ down▼”按钮约3秒钟以保存并切换到下一个菜单。菜单1:模式选择模式1(默认):Pedelec / eBike(US):电源LED栏显示辅助功率水平。节流时,它会切换到ebike模式。模式2:PEDELEC(EU):功率LED栏显示辅助功率水平。节流将处于6公里的ebike模式。模式3:未使用。未来发展。模式4:Pedelec(EAF):响应节气门/EAF。功率LED栏杆显示电流(放大器)级别。模式5:ebike(巡航):响应油门(从量规)。功率LED栏显示当前(放大器)级别。“向上▲”按钮集巡航。“ down▼”按钮关闭巡航。Ebrake也将脱离巡航。