对准时,并非所有三个螺栓都能安装到位,例如,在 1° 的微小、可能难以察觉的偏航情况下,只有一个螺栓能安装到位,而
1 伊朗德黑兰医科大学医学院,2 伊朗德黑兰通用科学教育与研究网络 (USERN) 系统评价与荟萃分析专家组 (SRMEG),3 伊朗德黑兰医科大学儿童医学中心免疫缺陷研究中心,4 伊朗德黑兰通用科学教育与研究网络 (USERN) 元认知兴趣小组 (MCIG),5 南非开普敦斯泰伦博斯大学医学与健康科学学院精神病学系,6 巴西阿雷格里港南里奥格兰德联邦大学阿雷格里港临床医院国家转化医学研究所双相情感障碍项目和分子精神病学实验室,7 伊朗德黑兰医科大学医学院免疫学系
血脑屏障 (BBB) 是分子和药物的有效屏障。多细胞 3D 球体显示出可重现的 BBB 特征和功能。这里使用的球体由六种脑细胞类型组成:星形胶质细胞、周细胞、内皮细胞、小胶质细胞、少突胶质细胞和神经元。它们形成体外 BBB,调节化合物进入球体的运输。通过共聚焦激光扫描显微镜研究了荧光超小金纳米粒子(核心直径 2 纳米;流体动力学直径 3-4 纳米)在 BBB 中的渗透随时间的变化,以溶解的荧光染料 (FAM-炔烃) 作为对照。纳米粒子很容易进入球体内部,而溶解的染料本身无法穿透 BBB。我们提出了一个模型,该模型基于纳米粒子随时间打开 BBB,然后快速扩散到球体中心。当球体经历缺氧(0.1% O 2 ;24 小时)后,血脑屏障的通透性增强,允许更多的纳米颗粒和溶解的染料分子被吸收。结合我们之前观察到的这种纳米颗粒可以轻松进入细胞甚至细胞核,这些数据证明超小纳米颗粒可以穿过血脑屏障。
血脑屏障(BBB)限制了阿尔茨海默氏病(AD)和其他神经系统疾病的治疗递送。动物模型表现出具有重点超声(FUS)的β-淀粉样菌斑的安全性BBB开放和还原。我们最近证明了在六名具有早期AD的参与者的海马和内嗅皮层中FUS诱导的BBB开口的可行性,安全性和可逆性。现在,我们报告了通过FUS处理对β-淀粉样菌斑的BBB开口的影响。六名参与者在基线时进行了18次F-Florbetaben PET扫描,在第三次FUS治疗完成后1周(间隔60天)。PET分析比较了经过处理和未经处理的半球中海马和内嗅皮层的分析,发现18 f氯贝替替伯的比率降低。标准摄取值比(SUVR)降低范围为2.7%至10%,平均为5.05%(±2.76),表明β-淀粉样菌斑块降低。
抽象引入缺血性中风是最普遍的中风类型,其特征是由血管动脉闭塞引发的无数病理事件。血脑屏障(BBB)的破坏是可能导致致命结果的关键病理事件。然而,它似乎遵循了一种多相模式,该模式与不同的生物底物以及可能对比的结果相关。通过影像学技术沿着中风的不同阶段解决BBB渗透率(BBBP)可能会导致对疾病的更好理解,改善患者的特定治疗方法,并开发了新的治疗方法和新的治疗方法和递送方法。这项系统的审查将旨在全面总结有关急性缺血性中风不同阶段中BBBP值演变的现有证据,并将这一事件与患者的临床结果相关联。方法和分析我们将在MEDLINE,EMBASE,COCHRANE CENTRAL登记册,Scopus和Web of Science上进行计算机化搜索。此外,还将扫描灰色文献和临床。我们将包括对人类的人类的队列,横截面和病例对照研究,对中风中的BBBP进行定量评估。检索的研究将由两位作者独立审查,任何差异都将通过共识或第三名审稿人解决。审阅者将提取数据并评估所选研究偏见的风险。道德和传播道德批准不需要。如果可能的话,将按照Cochrane手册提供的系统审查的指南,将数据合并为定量荟萃分析。我们将使用建议,评估,开发和评估方法的评分来评估累积证据。所有用于此工作的数据均可公开使用。从这项工作中获得的结果将在同行评审期刊中发表,并在相关会议中传播。Prospero注册号CRD42019147314。
神经胶质瘤根据组织病的标准分类为WHO级I级I-IV。尽管I级肿瘤是良性的,但II级和III级肿瘤是恶性的,并且可以发展为最高级。即使在多模式治疗(包括手术,放疗和辅助化疗)(1-3)的多模式治疗后,IV级肿瘤(GBMS)的中位生存期也仅约16个月(1-3)。因此,迫切需要新型靶向疗法的开发。杂合突变,包括急性髓性白血病(AML),血管免疫细胞淋巴瘤,软骨瘤和胆管癌(4-7)。这些突变也发生在大部分II级–III级星形胶质细胞瘤和少突endrogliomas(53 - 83%)和次级GBM(54%;参考文献。8,9)。IDH1 ARG132(R132)密码子中的错义突变引起单个氨基酸取代,最常见于组氨酸(H),也是半胱氨酸(C),丝氨酸(S),甘氨酸(G),Leucine(k),lecine(k)和Isolecoine(I)。在神经胶质瘤中,最常见的突变是IDH1R132H,该突变约为所有IDH突变的90%,而很少检测到IDH2突变,与AML不同(4.4%;参考;参考。1,9)。野生型IDH是使用nADPÞ将异晶酸酯转换为-Ketogoglutarate(A -kg)的酶,而IDH1和IDH2分别位于细胞质和线粒体中。突变体IDH催化A-kg转换为oncometabolite 2-羟基谷物酸盐(2-HG;ref。11 - 16)。 在临床前广泛分析了突变体IDH在肿瘤发生中的作用11 - 16)。在临床前广泛分析了突变体IDH在肿瘤发生中的作用10),竞争性地抑制-kg - 依赖性双氧酶,包括表观遗传调节剂(十个易位和组蛋白脱甲基酶)等(EGL九种同源物和胶原蛋白蛋白蛋白蛋白蛋白蛋白酶和胶原蛋白4-羟基酶;参考;参考。2-Hg的抑制作用导致CpG岛和组蛋白甲基化的异常DNA甲基化(11-13,17)以及缺氧诱导因子1 A的稳定,从而促进了肿瘤发生(18)。
摘要:聚焦超声 (FUS) 与微泡 (MB) 相结合被发现是一种很有前途的破坏血脑屏障 (BBB) 的方法。然而,这种破坏如何影响药物运输仍不清楚。在本研究中,基于多物理模型研究了脂质体和 FUS-MB 诱导的血脑屏障破坏 (BBBD) 联合治疗中的药物运输。应用了从 MR 图像中提取的真实 3D 脑肿瘤模型。结果表明,当在相同输送条件下使用爆发式超声打开血脑屏障时,脂质体与游离阿霉素注射液相比在进一步改善治疗方面具有优势。这种改善主要归因于 BBBD 增强的游离阿霉素的经血管运输和长循环脂质体的药物可持续供应。治疗效果可以通过不同的方式提高。同时破坏血脑屏障和脂质体推注可以使更多的游离药物分子穿过血管壁,而延长血脑屏障持续时间可以加速脂质体经血管运输,从而更有效地释放药物。然而,需要很好地控制药物释放速率,以平衡药物释放、经血管交换和消除之间的平衡。本研究的结果可以为未来优化这种针对脑癌的 FUS-MB-脂质体联合疗法提供建议。
摘要背景髓鞘碱性蛋白(MBP)是中枢神经系统髓鞘中第二丰富的蛋白质。自20世纪80年代以来,它一直被视为创伤和疾病中脑组织损伤的标志物。目前尚无关于动脉瘤性蛛网膜下腔出血(SAH)中MBP的报道。方法104例动脉瘤破裂的SAH患者,在破裂后24小时内接受血管内治疗,采集156份血液样本:SAH后0 - 3天104份,4 - 6天32份,9 - 12天20份。采用ELISA检测MBP水平,并与入院时的临床状况、实验室结果、影像学检查结果和3个月时的治疗结果进行比较。结果 SAH 后 0 – 3 天的 MBP 水平在预后不良患者 (p < 0.001)、死亡患者 (p = 0.005)、接受颅内介入治疗的患者 (p < 0.001) 和脑出血 (ICH; p < 0.001) 患者中显著升高。SAH 后 4 – 6 天,颅内介入治疗 (p = 0.009) 和 ICH (p = 0.039) 后的 MBP 水平显著升高。SAH 后 0 – 3 天的 MBP 水平与 3 个月格拉斯哥预后量表 (cc = − 0.42) 以及 ICH 体积 (cc = 0.48) 之间存在临床相关性。所有完全康复的患者在 SAH 后 0 – 3 天的 MBP 水平均低于检测限。血管内动脉瘤封堵术后,104例患者中86例(83%)MBP未升高。结论颅内动脉瘤破裂后外周血MBP浓度反映脑组织损伤程度(手术或ICH所致),与治疗结果相关。血管内动脉瘤封堵术后MBP未升高,提示该技术安全性较高。
儿童脑肿瘤是最常见的实体肿瘤,也是儿童、青少年和青年期癌症死亡的首要原因。目前对大多数此类肿瘤的治疗远非最佳,许多肿瘤的预后仍然不容乐观。目前医疗治疗失败的主要原因之一部分是由于血脑屏障 (BBB) 的存在,它限制了药物向肿瘤的输送。在过去的 20 年里,使用低强度脉冲超声 (LIPU) 打开 BBB 已成为一种有前途的增强药物向大脑输送的技术。在临床前模型中,已经观察到从低分子量药物到抗体和免疫细胞等各种治疗剂的增强输送,以及肿瘤控制和生存率提高。该技术最近已进入颅外和颅内设备的临床试验。此外,该技术的安全性和可行性已在每月接受卡铂化疗的复发性胶质母细胞瘤患者中得到证实。本综述回顾了最常见的儿童脑肿瘤中 BBB 的特征。然后,总结并描述了超声 (US) 破坏 BBB 的原理和机制,这些原理和机制在组织学和生物学层面上均有描述。最后,介绍了在肿瘤模型中使用超声诱导 BBB 开放的临床前研究、最近的临床试验以及该技术在儿科中的潜在用途。
1。Dolgikh E等。QSAR模型的脑对铂分隔系数,KP,UU,大脑:将P-糖蛋白外排纳入变量。2016。2。Friden M等。 使用大脑和脑脊髓液中未结合药物浓度的新型数据集的大鼠和人类结构 - 脑暴露关系。 2009。 3。 Pedregosa F等; Scikit-Learn:Python中的机器学习。 2011。 4。 rdkit:开源化学信息学; http://www.rdkit.orgFriden M等。使用大脑和脑脊髓液中未结合药物浓度的新型数据集的大鼠和人类结构 - 脑暴露关系。2009。3。Pedregosa F等; Scikit-Learn:Python中的机器学习。2011。4。rdkit:开源化学信息学; http://www.rdkit.org