1. 英国牛津大学纳菲尔德妇女与生殖健康系 2. 英国牛津大学格林坦普顿学院牛津孕产妇与围产期健康研究所 3. 英国牛津大学博特纳研究中心医学统计中心 4. 英国牛津大学生物医学工程研究所工程科学系 5. 巴西佩洛塔斯天主教大学健康与行为学研究生项目。 6. 肯尼亚内罗毕阿迦汗大学健康科学学院。 7. 阿曼苏丹国马斯喀特卫生部家庭与社区卫生司 8. 意大利都灵健康与科学城 SC Ostetricia 2U 9. 印度那格浦尔凯特卡医院那格浦尔 INTERGROWTH-21 世纪研究中心 10. 北京大学公共卫生学院,中国北京 11. 阿联酋沙迦大学临床营养与饮食学系 12. 美国西雅图儿童医院全球预防早产与死产联盟 (GAPPS),西雅图 98105 WA 13. 法国巴黎巴黎笛卡尔大学内克尔儿童疾病医院产科与胎儿医学系 14. 加拿大多伦多儿童医院全球儿童健康中心
摘要 圈养灵长类动物的营养摄入量不一定反映其野生同类的营养摄入量。圈养饮食中非结构性碳水化合物含量通常较高,纤维含量较低,导致肥胖、牙齿问题、腹泻和行为问题等健康问题。本研究的主要目的是建立和监测五种灵长类动物(Ateles fusciceps rufiventris、Cercopithecus hamlyni、Allochrocebus lhoesti、Cercopithecus roloway、Sapajus xanthosternos)的无水果饮食变化。对营养和行为学进行了监测,包括在饮食变化前、变化期间和变化后评估饮食的营养成分;监测粪便稠度;观察喂养选择;以及通过扫描取样观察攻击性行为和发声的发生。初始饮食包括栽培水果和蔬菜以及一些额外食物(谷物、动物和植物蛋白),非结构性碳水化合物(尤其是糖)含量高于饲养指南中的推荐水平。经过四周的饮食变化(在此期间逐渐去除水果),平均糖含量减少了一半以上,纤维含量增加了。蜘蛛猴 A. f. rufiventris 和哈姆林猴 C. hamlyni 的粪便稠度有所改善(布里斯托尔粪便评分变化:分别为 6 至 4 和 7 至 3)。卷尾猴 S. xanthosternos 和哈姆林猴的进食时间有所增加(增加了 1.5 至 2 倍)。这些发现强调了将动物园管理的灵长类动物改为无水果高纤维饮食的有益影响。
肢带型肌营养不良症 R1 型 (LGMDR1) 是一种人类常染色体隐性肌病,由钙蛋白酶 3 蛋白 (CAPN3) 缺乏引起。这种疾病缺乏有效的治疗方法和合适的模型,因此通过 CRISPR-Cas9 生成 KO 猪提供了一种更好地了解疾病行为学和开发新疗法的方法。显微注射是 CRISPR-Cas9 在猪胚胎中进行基因编辑的主要方法,但最近也有报道称使用电穿孔可以更快、更轻松地处理更多胚胎。本研究的目的是优化猪卵母细胞电穿孔,以最大限度地提高胚胎质量和突变率,从而有效生成 LGMDR1 猪模型。我们发现,与显微注射相比,使用 4 个电穿孔脉冲和双倍 sgRNA 浓度生成 CAPN3 KO 胚胎的效率最高。直接比较显微注射和电穿孔,发现胚胎发育速度和突变参数相似。我们的研究结果表明,卵母细胞电穿孔是一种比显微注射更简单、更快捷的方法,可与标准方法相媲美,为猪转基因的民主化铺平了道路。© 2022 作者。由 Elsevier Inc. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
哥伦比亚大学,美国纽约 眼科科学教授 BSCO 主任 Silverman 博士自 2012 年起担任 BSCO 主任,欢迎您参加 2024 BSCO。此介绍将概述课程,并为纽约市的访客介绍哥伦比亚、社区和城市。 9:00-11:00 眼部外科解剖学 Hermann Schubert,医学博士 哥伦比亚大学,美国纽约 临床眼科学和病理学教授 纽约长老会医院眼科病理学主任 Schubert 博士是纽约长老会医院的主治医师,专攻眼科病理学、糖尿病眼病、视网膜疾病和 AMD。Schubert 博士是兰开斯特眼科学课程眼部解剖科主任。他是 50 多篇出版物、15 部书籍章节和一本书籍的作者、合著者和编辑。他是《眼科调查》的联合编辑,并担任美国眼科学会写作委员会成员和视网膜和玻璃体科室主席七年。 11:00-12:00 视网膜神经节细胞的发育及其与大脑的连接;损伤后的更换和重新连接 Carol Mason,博士 美国纽约哥伦比亚大学 眼科科学和神经科学教授 Mortimer B. Zuckerman 心智脑行为研究所成员 校际规划主席 神经生物学和行为学博士项目联席主任
劳伦在德克萨斯州的休斯顿长大,她对神经科学的热爱始于高中时期,当时她与医学博士保罗舒尔茨博士一起研究 ALS 的认知影响,并最终以第一作者身份在《临床和实验神经心理学杂志》上发表了论文。之后,她继续参与哥伦比亚大学的研究,学习神经科学和行为学,在那里她设计了自己的研究,观察患有慢性压力的怀孕大鼠大脑中的催产素受体密度。在医学院,劳伦担任神经病学和精神病学学生兴趣小组的主席,并被选入金人文主义荣誉协会。她继续与舒尔茨博士一起进行研究,开发了一种治疗阿尔茨海默病的新型血浆置换疗法。随后,她与博士一起进行研究。 Carlos Zarate 博士和 Larry Park 博士在美国国立卫生研究院实验治疗学和病理生理学分部开展了一项关于氯胺酮和 NMDA 拮抗剂抗抑郁作用的回顾性数据挖掘项目,她的第一作者论文发表在《精神病学研究杂志》上。Lauren 计划通过自然语言处理和机器学习,利用迷幻辅助心理治疗会话的记录,将神经科学研究与临床叙述联系起来。在娱乐方面,Lauren 喜欢骑自行车游览这个充满活力的城市,研究心理分析,亲近大自然,沉浸在谈话中而忘记时间。
摘 要 : 目的:本研究旨在明确枳椇果梗多糖( HDPs )对酒精暴露所致的小鼠神经行为异常的改善效果,并探究谷 氨酸代谢和紧密连接蛋白表达在其中的作用。方法:雄性 C57BL/6 小鼠按 114 μL/20 g 剂量连续酒精灌胃 14 d ,建 立酒精暴露模型,同时设置干预组进行 HDPs 干预( 114 μL/20 g 酒精 +100 mg/kg HDPs )。应用行为学实验(旷场 实验、高架十字迷宫实验)评估神经行为学变化,采用气相色谱法测定小鼠血液中乙醇浓度, γ -H2AX 荧光检测小 鼠脑海马组织 DNA 损伤,免疫组化分析检测小鼠脑组织中紧密连接蛋白 Claudin-1 和 ZO-1 的表达,并通过超高 效液相色谱 - 四级杆飞行时间质谱法( UPLC-Q-TOF-MS )代谢组学技术对小鼠脑组织代谢物进行分析。结果: HDPs 可有效降低酒精暴露小鼠血液乙醇浓度,由 4.69±0.29 g/L 降至 1.64±0.104 g/L ;改善酒精暴露所致的小鼠神 经行为异常,旷场实验中,与酒精组相比, HDPs 干预组总路程显着提升至 27340±3304 cm ( P <0.05 ),平均速度 显着提升至 67.4±13.4 cm/s ( P <0.05 ),不动时间缩短 29% ( P <0.05 );高架十字迷宫实验中,与酒精组相比, HDPs 干预组闭臂停留时间显着减少至 195.6±10.3 s ( P <0.05 ),开放臂进入次数显着增加 26% ( P <0.05 ));还 可降低酒精诱导的脑组织氧化应激与 DNA 损伤水平, ROS 、 MDA 分别降低 5.4% 、 29.5% ( P <0.05 ), T-AOC 提 高 10.9% ,上调脑海马组织中 Claudin-1 ( 2.2 倍)和 ZO-1 ( 0.1 倍)蛋白的表达;并调节脑组织谷氨酸代谢通路, 提高甘氨酸( 19.7% )、谷光甘肽( 25% )、琥珀酸( 22.6% )等代谢物水平。结论: HDPs 可有效改善酒精对小鼠 神经行为的影响,其机制或可能通过抗氧化、保护紧密连接蛋白和调节谷氨酸代谢通路发挥作用,研究结果可为 扩展枳椇资源在食品领域中的应用提供理论依据。
目的:为改善异甘草素(ISL)水溶性差、生物利用度低的问题,设计一种以脑靶向多肽血管肽-2为修饰剂,以DSPE-PEG 2000为药物载体制备新型载药胶束,用于治疗急性缺血性中风。方法:采用薄膜蒸发法合成以血管肽-2为脑靶向配体修饰的ISL胶束(ISL-M)。利用透射电子显微镜观察胶束形貌,用纳米粒度分析仪测量粒径和zeta电位,用高效液相色谱检测胶束的载药量、包封率和体外释放率。采用UPLC-ESI-MS/MS法测定ISL静脉给药后在血浆和主要组织中的浓度,比较ISL和ISL-M的药代动力学和组织分布。在MCAO小鼠模型中,通过行为学和分子生物学实验证实了ISL和ISL-M的保护作用。结果:结果表明,ISL-M的载药量为7.63±2.62%,包封率为68.17±6.23%,粒径为40.87±4.82nm,zeta电位为−34.23±3.35mV。体外释放实验表明ISL-M具有良好的缓释效果和pH敏感性。与ISL单体相比,ISL-M能显著延长ISL在体内循环时间,增强在脑组织中的蓄积;ISL-M可通过抑制细胞自噬和神经元凋亡来减轻MCAO小鼠的脑损伤,且对主要组织器官无细胞结构损伤等不良影响。结论:ISL-M 有望成为 ISL 在急性缺血性卒中临床应用的理想候选药物。关键词:异甘草素、胶束、脑分布、药代动力学、缺血性卒中、MCAO
Ano, B. & Bent, R. 2022. 影响多代家族企业数字化转型战略的人为因素:对五家法国增长型家族企业的多案例研究。《家族企业管理杂志》,第 12 卷,876-891。Blustein, DL、Lysova, EI 和 Duuffy, RD 2023. 理解体面工作和有意义的工作。《组织心理学和组织行为学年鉴》,第 10 卷,289-314。Bornet, P.、Barkin, I. 和 Wirtz, J. 2020. 智能自动化 - 学习如何利用人工智能来促进业务并使我们的世界更加人性化。Bruderer, H. 人工智能的诞生:1951 年在巴黎举行的第一届人工智能会议?国际发明与创新社区:IFIP WG 9.7 国际计算机史会议,HC 2016,美国纽约布鲁克林,2016 年 5 月 25-29 日,修订精选论文,2016 年。Springer,181-185。Cameron,D. 2022。机器人提升了我:自动化的未来。IT Now。Ceipek,R.、Hautz,J.、De Massis,A.、Matzler,K. 和 Ardito,L. 2021。通过探索性和利用性的物联网创新实现数字化转型:家庭管理和技术多样化的影响*。产品创新管理杂志,38,142-165。 Chernoffi, A. & Warman, C. 2023. Covid-19 及其对自动化的影响。应用经济学,55,1939-1957。Classen, N.、Carree, M.、Van Gils, A. & Peters, B. 2011. 家族所有权在中小企业研究、创新和生产力中的作用:逐步计量经济学分析。华盛顿:国际小企业理事会 (ICSB)。Conniffi, R. 2011. 卢德分子真正反对的是什么。史密森尼杂志,227-242。
味觉和健康对成功的饮食自我控制的影响:一项针对儿童的小鼠追踪食物选择研究。《生理学与行为学》,即将出版。Vandekerckhove, J.、White, CN、Trueblood, JS、Rouder, JN、Matzke, D.、Leite, FP、Etz, A.、Donkin, C.、Devezer, B.、Criss, A. 和 Lee, MD (2019)。认知科学中的稳健多样性。计算大脑与行为,2(3-4),271-276。 Starns, JJ、Cataldo, AM、Rotello, CM、Annis, J.、Aschenbrenner, A.、Broder, A.、Cox, G.、Criss, A.、Curl, RA、Dobbins, IG、Dunn, J.、Enam, T.、Evans, NJ、Farrell, S.、Fraundorf, SH、Gronlun, SD、Heathcote, A.、Heck, DW、希克斯、JL、赫夫、MJ、凯伦、D.、基、KN、基利奇、A.、克劳尔、KC、克雷默、KR、莱特、FP、劳埃德、ME、马莱卡、S.、梅森、A.、麦卡杜、RM、麦克唐纳、IM、迈克尔、RB、米克斯、L.、米兹拉克、E.、摩根、DP、穆勒、ST、奥斯特、 A.,雷诺兹,A., Seale-Carlisle, TM, Signmann, H., Sloane, JF, Smith, AM, Tillman, G., van Ravenzwaaij, R., Weidemann, CT, Wells, GL, White, CN, Wilson, J. (2019)。使用盲推理评估理论结论以调查潜在的推理危机。心理科学方法与实践进展,2(4),335-349。Curl, RA & White, CN (2019)。注意网络测试中的提示效应:聚光灯扩散
u-tokyo.ac.jp 神崎高桥实验室 研究领域: 我们的研究目的是通过结合信息学、工程学和生物学的跨学科方法阐明产生适应性行为(或智力)的基本神经机制。作为模型系统,我们使用培养的神经元、昆虫大脑和老鼠大脑。我们的研究涉及调查生物机器混合系统,同时也建立了通过外部命令控制大脑功能行为的基本技术。 研究示例: 了解大脑、向大脑学习 ■用昆虫传感器和神经回路实现的自适应机器人 实现对各种环境的适应性是构建自主系统的基本目标之一。昆虫通过其简单的神经系统表现出一系列复杂的适应性行为来响应其环境,因此,它们是理解适应性的良好模型。我们已经开发了昆虫机器混合系统,使我们能够通过操纵机器人(身体)、昆虫(大脑)和其环境(A,B)之间的相互作用来分析和评估昆虫的适应性。通过使用混合系统分析适应性,我们可以建立行为模型并将其应用于移动机器人。(2)大脑改造 ■大脑重新布线 大脑是一种可重写的设备。对学习和微刺激引起的可塑性以及神经处理的理解将为工程和医学创新铺平道路(C)。为此,我们还对工程和信息科学方法感兴趣,包括开发神经接口以及实施多变量统计分析和信息论。 ■通过分子遗传学修改昆虫大脑中的神经回路 基因包含动物身体的蓝图,包括传感器和神经回路。我们可以通过对神经元特性的基因改造来了解昆虫大脑中神经回路的功能(D)。这些方法的一个重要应用是开发出能够报告几乎任何感兴趣的刺激的“传感器昆虫”。 (3)大脑重建 ■利用数学模型重建昆虫大脑 我们利用分子遗传学、形态学、生理学、生物化学和行为学(E)等各种技术对昆虫大脑进行分析,建立了神经元数据库。通过将数据库中的信息整合到数学模型中,我们可以了解昆虫适应行为背后的机制。 ■利用分离培养神经元的神经计算芯片 在培养皿中培养的神经元会形成自组织网络。通过控制自组织,我们开发出可用作计算设备的培养网络。 助理教授 Hirokazu TAKAHASHI