随着采用压缩光的引力波探测器的出现,量子波形估计(通过量子力学探针估计时间相关信号)变得越来越重要。众所周知,量子测量的反作用限制了波形估计的精度,尽管这些限制原则上可以通过文献中的“量子非破坏”(QND)测量装置来克服。然而,严格地说,它们的实现需要无限的能量,因为它们的数学描述涉及从下方无界的哈密顿量。这就提出了一个问题,即如何用有限能量或有限维实现来近似非破坏装置。在这里,我们考虑基于“准理想时钟”的有限维波形估计装置,并表明由于近似 QND 条件而导致的估计误差随着维度的增加而缓慢减小,呈幂律。结果,我们发现用这个系统近似 QND 需要很大的能量或维数。我们认为,对于基于截断振荡器或自旋系统的设置,预计该结果也成立。
1 摘要 — 基于超快光电探测器中的光外差(光)混合的 THz 源非常有前景,因为它们在室温下工作,可能结构紧凑、成本高效,并且最重要的是频率可调性广。然而,它们的广泛使用目前受到 THz 频率下 µW 范围的可用功率水平的阻碍。我们在此介绍一种行波结构,其 THz 频率下的相干长度为毫米级,为大有源面积(~4000 µm 2 )光混合设备开辟了道路,该设备能够处理超过 1 W 的光泵浦功率,远远超出了使用小有源面积(<50 µm 2 )的标准集总元件设备的能力,需要保持与 THz 操作兼容的电容水平(<10 fF)。它基于氮化硅波导,该波导耦合到嵌入共面波导中的膜支撑低温生长 GaAs 光电导体。根据本研究详细阐述的该器件的光电子模型,预计毫瓦级功率可达到 1 THz,甚至高于 1 µW,最高可达 4 THz。实验中,使用两个 780 nm-DFB 激光器产生的拍音测量 1 毫米长结构的频率响应,最高可达 100 GHz,清楚地显示了预期的行波特征,即当反向行波的贡献完全消除时,衰减 6 dB,最终达到 ~50 GHz,随后达到 ~100 GHz 的恒定水平。在行波状态下进行操作的实验演示是实现该概念在功率水平和频率带宽方面的最初承诺的第一步。
1 乌得勒支大学地球科学系,3584 CB 乌得勒支,荷兰 2 克尔曼 Shahid Bahonar 大学地质学系,克尔曼 7616913439,伊朗 3 波兰科学院矿产与能源经济研究所,Wybickiego 7A, 31-261 克拉科夫,波兰 4 克尔曼 Shahid Bahonar 大学管理与经济学院经济学系,克尔曼 7616913439,伊朗 5 阿瓦士 Shahid Chamran 大学地球科学学院地质学系,阿瓦士 6135743136,伊朗; zarasvandi_a@scu.ac.ir 6 伊朗克尔曼 Shahid Bahonar 大学计算机科学系,克尔曼 7616913439 7 荷兰乌得勒支大学哥白尼可持续发展研究所,3584 CB 乌得勒支 * 通讯地址:r.derakhshani@uu.nl (RD);m.zaresefat@uu.nl (MZ)
摘要 神经科学的一个基本挑战是解释广泛的大脑区域如何灵活地相互作用以支持行为。我们假设,振荡的行波是神经协调的关键机制,它们以独特的模式在皮质中传播,控制不同区域的相互作用。为了验证这一假设,我们使用了进行多项记忆实验的人类的直接大脑记录和一个可以灵活测量行波传播模式的分析框架。我们发现,行波不仅以平面波的形式沿皮质传播,还以螺旋波、源汇波和更复杂的模式传播。行波的传播模式与行为的新方面相关,特定的波形反映了特定的认知过程,甚至是个人记住的项目。我们的研究结果表明,大规模皮质行波模式揭示了大脑中认知过程的空间组织,可能与神经解码有关。
TWT 极大地改变了雷达系统、电子战、通信系统和空间应用的防御能力。由于其高功率放大能力和耐用性,它们在国防系统中发挥着关键作用。它们的效率和可靠性使其成为远程通信、雷达系统和电子战应用的必备技术。凭借其久经考验的记录,TWT 在增强现代国防技术能力方面仍然不可或缺。
摘要——许多组织致力于将波浪能转换器技术商业化,并通过技术就绪水平推进其设计。在现场部署原型波浪能转换器之前,一个关键步骤是通过实验室测试和性能表征来验证波浪能转换器中包含的子系统和组件。2021 年,美国国家可再生能源实验室 (NREL) 开发并演示了一种系统,用于在现场部署之前使用低速、高扭矩测力计和并网高功率直流电源和接收器测试动力输出装置 (PTO)。液压测力计可以模拟波浪运动引起的 PTO 驱动,并且能够适应各种波浪周期和高度,这些波浪周期和高度由测力计的各种速度和扭矩表示。大功率双向电源允许对波浪能转换器电力电子设备进行硬件在环和控制器在环测试。本文介绍了 NREL 研究人员在现场部署之前测试新型波浪能转换器 PTO 中所有组件和子系统所使用的方法。
过去的一年,我们面临重重挑战。东部边境以外的战争造成了巨大的人道主义危机,并加剧了此前疫情引发的能源和经济危机。在这种充满诸多风险因素的艰难环境中,谨慎和负责任地采取行动至关重要。我们已经看到,能够快速应对不可预见的市场和行业挑战是多么重要。在通货膨胀迅速上升的情况下,出现了额外的挑战,例如与信贷假期的引入和 WIBOR 基准改革相关的挑战。法国巴黎银行波兰分行的管理委员会和员工都表明,他们能够应对这些挑战,表现出极大的承诺和行动灵活性,我谨代表监事会对此表示诚挚的感谢。
在现实世界中,PSU 级的增益和斜率取决于振幅,因此它们在大振幅/激励下通常是非线性的。除了斜率限制外,增益还取决于设备的工作点。
图 2. 视觉表征从感觉皮质传播到联想皮质。A. 编码分析得出的相关分数,经过训练可根据刺激角度的正弦和余弦预测脑电图活动。B. 每个点对应于使用最小范数估计从脑电图编码拓扑估计的源。x 轴对应于沿后前方向的源位置。y 轴表示每个源中峰值活动的相对时间(顶部面板)或此峰值的强度(底部面板)。星号表示统计显著性(**:p<.01,***:p < 0.001)C. 与 B 相同的数据,但绘制在皮质表面。颜色表示峰值幅度(例如黑色:幅度 = 各个源的中值幅度)和峰值潜伏期(例如蓝色:峰值在各个源的最早响应的 5% 百分位数内,红色:峰值超过 95% 百分位数)。D. 增量和脑电图幅度之间的相关系数。 E-F. 类似分析 tp BC 应用于编码连续刺激之间变化的大脑反应(Delta)。G. 使用角度(sin+cos)和 delta 获得的交叉验证编码分数(Pearson R)。颜色表示 EEG 通道。结果可以在 https://kingjr.github.io/chronicles/ 上以交互方式显示
作者注:CDT Kathryn Seyer 是西点军校系统工程专业的大四学生。这项研究是在 Edward Londner 先生的指导下作为荣誉计划要求的一部分完成的。CDT Seyer 感谢系统工程系对这项研究的支持。CDT Seyer 还要感谢 Ronald Carson 博士对这项研究的支持。摘要:波音 737 MAX 8 飞机因 6 个月内发生的两起致命坠机事故而停飞。本研究的目的是将系统思维方法应用于导致这两起坠机事故的原因。目前很少有官方数据详细说明坠机原因,但使用系统思维来分析大局仍然很有价值。这项研究得出的结论是,两起致命事故是波音 737 MAX 8 系统在开发、测试和实施阶段出现的许多技术、管理和运营问题造成的。关键词:波音 737 MAX 8、航空事故、安全系统、工程管理、技术故障