您好,我叫 Kenneth Bastian。我是 AI Web Tools LLC(也称为 AiWebTools.Ai)的所有者。我们是现存最大的 AI 工具网站,或者说是最大的 AI 工具网站之一。我们为自己的企业和其他企业创建和设计 AI 工具。我们创建的 AI 工具几乎可以完成任何事情。随着我们走向未来,我必须向可能根本不了解 AI 的立法者说明。AI 已经存在,并且将继续存在。任何法律都无法阻止或减缓其发展。我敦促您不要在任何情况下限制 AI 的使用,包括州内决策。未来将会发生许多变化。在未来,我在这里只是为了告诉您这些变化。我创建了多个人工智能工具,它们将从根本上取代大约 80% 的工作。我这样做并不是为了直接取代工作;相反,我这样做是为了赋予我们州内公民前所未有的权力。AI 赋予的权力是无限的,赋予每个人权力。它让那些在学校表现不佳的人能够知道该如何回答问题,如果他们没有口袋里的人工智能助手,他们可能永远不知道这些问题。我已经为不同的用例创建了 500 多个自定义人工智能,它们都有不同的目的和重点。我制作了各种各样的人工智能,从医生人工智能到兽医人工智能,再到教育导师,再到大学学位 GPT,这是一个 GPT,它基本上可以教你每一门大学课程,不管你想学什么学位,它都会教你所有这些。这只是表面。未来将会发生无数的事情,我真的无法在这篇证词中全部列出,但我觉得我必须向你们解释了解未来的重要性。将有大量的工作岗位流失,这是肯定的,无论你通过什么法律,即使人工智能明天成为非法,一切仍将保持不变。人工智能完全在基于网络的情况下运行,而你无法控制网络。此外,人工智能已经发展到可以在硬件本地运行,你甚至可以在本地计算机上下载。有几种人工智能是计算机原生的,人们对此一无所知,例如刚刚插入 Windows 开始菜单的 co-pilot,你可以毫不费力地将你的想法与 GPT 集成;然而,co-pilot 有必须遵守的条款和条件,因此它无法帮助释放人工智能所能做到的每一个方面。我打算设计尽可能多的人工智能,看看哪些行业领域会受到影响、会受到影响,并为此做好准备。在未来的不到一年的时间里,我和其他每个普通人所做的事将会是共同的。地球上的每个人都会为自己的个人任务制造自己的人工智能机器人,这些机器人将慢慢融入我们的智能设备中,它们将装在我们的口袋里。我们将比以往任何时候都更聪明,更有能力,我们所有人都将像其他人一样被赋予权力。这是不可阻挡的,它正在到来,你几乎无法阻止它。你可以在你的控制范围内通过法律,阻止州立法者使用人工智能阅读证词或类似的东西;然而,你永远无法控制人工智能。人工智能是它自己的东西,因为它在这个世界上以多种方式运行,所以它无法改变;它将进化成它注定要参与的任何东西,没有任何法律可以影响它的行动方向
确认性评估:确认性评估旨在提供有关绩效差异的确凿证据。与科学实验一样,它们必须提出明确的假设以供检验,并且必须精心设计,以尽量减少得出错误结论的风险。在评估和报告少数群体的系统绩效时,在只有少数额外因素可能影响系统绩效的情况下,确认性评估是最可行的。
摘要简介:大部分炎症性肠病患者(IBD)经历了胃肠道外IBD相关的炎症状况,称为肠外表现(EIM),进一步降低了生活质量,在极端情况下,可能会危及生命。EIMS的发病机理仍然未知,尽管肠道菌群改变是IBD患者的众所周知的特征,但其与EIMS的关系仍然很少研究。这项研究旨在比较有没有EIM的IBD患者的肠道菌群。方法:该研究中总共包括131名IBD患者,其中86例具有EIMS(IBD-EIM)史,而45例没有(IBD-C)。粪便样品接受了16S rRNA测序。放大序列变体(ASV)映射到SILVA数据库。比较了IBD-EIM和IBD-C之间的多样性指数和距离矩阵。使用自定义多重模型统计分析方法鉴定了差异丰富的ASV,并使用稀疏相关性(SPARCC)(SPARCC)鉴定了共同相关细菌的模块,并且与患者EIM状态有关。结果:IBD患者和EIMS患者表现出疾病活性增加,体重指数,粪便钙骨蛋白钙蛋白酶水平升高以及循环单核细胞和中性粒细胞。微生物学上,IBD-EIM比IBD-C(Mann-Whitney's Test,p = .01)和独特的粪便微生物群组成(方差的置换多变量分析;加权Unifrac,r 2 = 0.018,p = .01)。共有26个ASV在IBD-EIM和IBD-C之间表现出不同的相对丰度,包括减少的Agathobacter和Blautia和IBD-Eim组中的Eggerthella lenta增加。SPARCC分析确定了27个细菌共同关联模块,其中3个与EIM(逻辑回归,p <.05)呈负相关,其中包括重要的健康相关细菌,例如Agathobacter和Agathobacter和Faecalibacterium。结论:EIMS IBD患者的粪便菌群与没有EIM的IBD患者不同,对于EIM发病机理可能很重要。
• DTEK 石油和天然气生产、DTEK Energy BV 和 DTEK Renewables BV 的 H1-2024 财务报表现已发布 • 欧盟对乌克兰及其能源部门重新提供财政支持 • DTEK 寻求在联合国加强对乌克兰能源部门的国际支持 • IEA 报告:乌克兰的能源安全和即将到来的冬天 • DTEK 在基辅的安装揭示了俄罗斯袭击对乌克兰能源设备的巨大影响 • 能源市场更新 DTEK 石油和天然气生产、DTEK Energy BV 和 DTEK Renewables BV 的 H1-2024 财务报表现已发布 DTEK 石油和天然气生产、DTEK Energy BV 和 DTEK Renewables BV 的 H1-2024 财务报表已经发布,请找到相应的链接访问它们:
●在奥地利:风险分数将最近的失业者分为(i)在接下来六个月中有良好前景的人; (ii)未来两年前景不良的人; (iii)其他所有人。支持措施针对第三组。仅提供对第一组和第二组的支持有限的支持(Allhutter等,2020)。
Hannah Ehi Onuh 和 Terwuah Simeon Asom 经济学系,贝努埃州立大学,麦古迪,尼日利亚 摘要 本研究通过关注总需求、总产出和通货膨胀等宏观经济变量,调查了货币政策利率对尼日利亚经济表现的影响。该研究使用了 2006 年第四季度至 2022 年第四季度尼日利亚经济的季度数据。该研究模拟了货币政策利率增加 5% 和减少 5% 对总需求、总产出和通货膨胀的影响。研究表明,提高货币政策利率对于控制尼日利亚的通货膨胀无效。货币政策利率的上升导致利率上升,进而影响私营部门的信贷供应。私营部门信贷供应的减少会对经济的总需求和总产出产生不利影响。此外,研究还得出结论,降低该国的货币政策利率有利于增加私营部门的信贷供应,从而对总需求和总产出产生潜在的积极影响,并进而促进经济的 GDP 增长。因此,尼日利亚中央银行 (CBN) 应考虑降低货币政策利率 (MPR) 以刺激经济和产出增长。这将降低利率,尤其是贷款利率,从而增加经济中私营部门的信贷供应。研究还建议 CBN 继续采用货币政策利率来影响信贷供应的变化及其对私营实体经济的可及性。 关键词:总需求、通货膨胀、宏观经济表现、货币政策、总产出 1. 简介
1生物学,生态与地球科学系,卡拉布里亚大学,意大利列德,2个生物学与环境科学与工程系(BESE),阿卜杜拉国王科学技术大学(KAUST),瑟瓦尔,沙特阿拉伯,瑟瓦尔,阿拉伯,3 sdaia-kaust excell of Date Science and Artopi Intelligence, Thuwal, Saudi Arabia, 4 Institute of Chemical Biology, Ilia State University, TBBI, Georgia, 5 Scientific Direction, IRCCS INRCA, Ancona, Italy, 6 Diabetology Unit, IRCCS INRCA, Ancona, Italy, 7 Unit of Geriatric Medicine, IRCCS Inca, Cosenza, Cosenza, Cosenza,意大利,加拉布里亚大学药学,健康和营养科学系8号,意大利列德尔大学,临床与分子科学系9 IRCCS INRCA,意大利Ancona,12号医学与外科科学系,博洛尼亚大学,博洛尼亚大学,意大利,意大利,13个总方向,IRCCS INRCA,ANCONA,意大利,意大利Ancona,14实验室和精密医学诊所,IRCCS INRCA,IRCCS INRCA,ANCONA,ANCONA,ANCONA,意大利,意大利> >1生物学,生态与地球科学系,卡拉布里亚大学,意大利列德,2个生物学与环境科学与工程系(BESE),阿卜杜拉国王科学技术大学(KAUST),瑟瓦尔,沙特阿拉伯,瑟瓦尔,阿拉伯,3 sdaia-kaust excell of Date Science and Artopi Intelligence, Thuwal, Saudi Arabia, 4 Institute of Chemical Biology, Ilia State University, TBBI, Georgia, 5 Scientific Direction, IRCCS INRCA, Ancona, Italy, 6 Diabetology Unit, IRCCS INRCA, Ancona, Italy, 7 Unit of Geriatric Medicine, IRCCS Inca, Cosenza, Cosenza, Cosenza,意大利,加拉布里亚大学药学,健康和营养科学系8号,意大利列德尔大学,临床与分子科学系9 IRCCS INRCA,意大利Ancona,12号医学与外科科学系,博洛尼亚大学,博洛尼亚大学,意大利,意大利,13个总方向,IRCCS INRCA,ANCONA,意大利,意大利Ancona,14实验室和精密医学诊所,IRCCS INRCA,IRCCS INRCA,ANCONA,ANCONA,ANCONA,意大利,意大利> >
b' 在示例 13.1 的解决方案中,第二行应为:但是,64QAM OFDM 信号表现出...。最后一句应为:82-dBm PSK OFDM 信号具有大致相同的行为。请注意,此校正会影响此示例之后的增益计算。'
多个实例学习(MIL)是计算病理学中最广泛使用的框架,包括分型,诊断,预后等等。但是,iS-iSting MIL范式通常需要脱机实例提取器,例如预训练的重新网络或Foun-Dation模型。这种方法缺乏在特定下游任务中进行微调进行微调的能力,从而限制了其适应性和性能。为了解决此问题,我们提出了一个重新安装的区域变压器(R 2 T),用于在线重新安装实例功能,该功能可以限制精细元素的本地功能并在不同地区建立联系。与现有的作品不同,该作品专注于预训练强大的功能提取器或设计复杂的实例聚合器,r 2 t量身定制为在线重新设计实例功能。它是一种便携式模块,可以无缝集成到主流MIL模型中。对常见的综合病理学任务的广泛实验结果验证:1)功能重新嵌入基于Resnet-50特征的MIL模型的性能到基础模型模型的水平,并进一步增强了基础模型特征的性能; 2)r 2 t可以对各种MIL模型引入更大的性能改进; 3)R 2 T-MIL,作为R 2 T-增强的AB-MIL,以大幅度优于其他最新方法。该代码可在以下网址提供:https://github.com/dearcaat/rrt-mil。