在我们迎来过去的一年之际,我们展望了大学在新校长选举的推动下将进一步发展,我们很高兴与大家分享我们在努力中取得的进展。我们对国际化、绿色技术和负责任材料的开发关注,这塑造了研究、教学和我们的第三项使命的新战略。在我们的部门内,我们认识到材料在科学研究和教育计划中的关键作用。新的本科学习计划“材料科学与技术”的成功推出标志着一个重要的里程碑,该计划以创新课程为特色,让学生从第一学期开始就接触到材料特定内容。该计划为我们参与欧洲材料学院 (EEIGM) 奠定了基础,该学院涉及欧洲六个材料科学部门,旨在激励学生应对材料科学的全球挑战。国际硕士课程“先进材料科学与工程 - AMASE”已于秋季迎来首批毕业,并成为我们部门教育计划不可或缺的一部分。我们部门值得一提的是两个新的 Christian Doppler 实验室。 CD-Lab“基于知识的先进钢设计”专注于研究废料使用量增加以及由此产生的不良杂质和微量元素对钢性能的影响。CD-Lab“晶体生长的先进计算设计”开发了改进晶体生长过程的计算方法,重点是碳化硅。我们的部门还通过购买高端设备扩展了其能力,包括用于超快速烧制 3D 打印陶瓷的新型火花等离子烧结系统、用于在低温下进行微观和纳米力学测试的低温纳米压痕仪,以及两台能够在微观和中观尺度上进行跨尺度疲劳测试的小型测试设备。在莱赫阿尔贝格举行的第二届材料科学研讨会重点关注“计算材料科学”,来自德国和美国的国际演讲者出席了会议。我们在莱奥本举办了第 7 届“先进陶瓷断口分析”会议、第 7 届“年轻陶瓷家增材制造”(yCAM)、第 57 届金相学会议以及第 20 届“合金元素对迁移界面影响研讨会”。我们还在塞高组织了第 93 届 IUVSTA 研讨会,主题是“表面工程结构、涂层和薄膜表征方面的进展”。我们为我们的年轻研究生获得的多个会议奖项以及我们的研究人员获得的杰出认可感到自豪。我们在《Materials Today Advances》、《Journal of Materials Chemistry A》、《Advanced Materials》、《Advanced Science》、《Nature Communications》或《Communications Materials》等著名期刊上发表了大量文章,强调了我们部门在 2023 年的高质量研究活动。我们衷心感谢我们的研究人员、学生和工业合作伙伴的坚定支持和持续的动力,以共同应对未来的挑战。我们邀请您欣赏以下页面,概述了我们部门在 2023 年的活动。
商业应用中对钠离子电池(SIB)的需求不断上升,这强调了满足商业标准的重要性。尽管具有潜力,但由于钠离子的独特特征,SIB遇到了与特定能量,骑自行车寿命和特定功率有关的挑战。设计了对阴极材料的设计策略,表面工程和结构修饰,以改善SIBS的电化学性能。在SIBS中,能量密度主要取决于阴极材料的选择。 如今,常见的阴极材料包括过渡金属氧化物,聚苯二极管化合物和普鲁士蓝色类似物(PBA)。 通过有针对性的修改来加强这些材料以克服其局限性对于将它们从实验室规模转变为实际使用至关重要。 但是,在有效利用阴极材料用于SIBS中的大规模储能之前,仍然存在一些挑战。 回收用过的SIBS构成了重大的经济和环境挑战,尤其是与锂离子电池(LIBS)相比。 尽管阴极材料取得了进展,但缺乏SIB的详尽的环境评估和详细的库存数据。 其发展的早期阶段限制了SIBS中的金属回收利用,强调了寿命终止治疗的重要性。 增生铝和水透明术通常用于金属恢复,由于钠蒸发风险降低,因此对SIBS的增压效能偏爱。 SIBS的营销和商业化趋势反映了对可再生能源的需求不断增长。在SIBS中,能量密度主要取决于阴极材料的选择。常见的阴极材料包括过渡金属氧化物,聚苯二极管化合物和普鲁士蓝色类似物(PBA)。通过有针对性的修改来加强这些材料以克服其局限性对于将它们从实验室规模转变为实际使用至关重要。但是,在有效利用阴极材料用于SIBS中的大规模储能之前,仍然存在一些挑战。回收用过的SIBS构成了重大的经济和环境挑战,尤其是与锂离子电池(LIBS)相比。尽管阴极材料取得了进展,但缺乏SIB的详尽的环境评估和详细的库存数据。其发展的早期阶段限制了SIBS中的金属回收利用,强调了寿命终止治疗的重要性。增生铝和水透明术通常用于金属恢复,由于钠蒸发风险降低,因此对SIBS的增压效能偏爱。SIBS的营销和商业化趋势反映了对可再生能源的需求不断增长。SIBS具有潜在的网格尺度储能,预计将支持可再生能源基础设施的扩展。但是,克服技术挑战和降低成本是SIB商业化的关键。在这方面,初创企业在为大规模存储应用程序推进SIB技术方面发挥了重要作用。公司之间的合作与制造设施的进步正在推动SIB生产,这标志着商业化的实质进展。本文旨在对当前的SIB技术研究和进步进行全面审查。
本期特刊旨在汇集高质量的论文,重点介绍各种可充电电池材料的最新发展,并重点介绍当今最重要和最有效的储能设备之一的科学和技术,即锂离子、锂硫、锂空气和钠离子电池。高性能电池技术被认为是通过大规模应用于电动汽车实现深度脱碳的关键因素。此外,通过大量关注推广可持续和可再生能源,可持续经济发展是可能的。这些间歇性能源系统的开发需要适当的储能方法,其中电池作为多功能储能设备发挥着重要作用。这些贡献提供了对一系列材料(电池的基本元素)的深入了解,其方法可以从纳米到宏观。在这些电池中,不仅阴极和阳极材料,而且其他组件(如电解质、添加剂和隔膜)在确定其能量密度、寿命、功率能力、安全性和成本方面也起着至关重要的作用。通过引入源于特殊形貌和结构、适宜的颗粒尺寸、表面工程、掺杂和复合形成等各种功能来设计和合成材料以获得稳定的电化学性能,人们对此给予了特别的关注。因此,对电池材料的广泛研究在生产未来可持续发展的先进可充电电池中发挥着越来越重要的作用。元素掺杂取代锂或氧位已成为提高层状正极材料电化学性能的一种简单有效的技术。与单一元素掺杂相比,Wang 等 [1] 在研究 Na + /F − 阳离子/阳极共掺杂对 LiNi 1/3 Mn 1/3 Co 1/3 O 2 的结构和电化学性能的影响方面做出了前所未有的贡献。三维和二维势图的第一性原理计算表明,Na 掺杂可以降低势阱并增加 Li + 离子的去除速率 [2]。采用溶胶-凝胶法,以乙二胺四乙酸 (EDTA) 为螯合剂,合成了共掺杂的 Li 1-z Na z Ni 1/3 Mn 1/3 Co 1/3 O 2-z F z (z = 0.025) 和纯 LiNi 1/3 Co 1/3 Mn 1/3 O 2 材料。结构分析表明,Na + 和 F − 掺杂剂分别成功掺入 Li 和 O 位。共掺杂使 Li 板间距更大、阳离子混合程度更低、表面结构更稳定,从而大大提高了正极材料的循环稳定性和倍率性能。Na/F 共掺杂电极在 1C 倍率下提供 142 mAh g −1 的初始比容量(0.1C 时为 178 mAh g −1),并且在 1C 倍率下经过 1000 次充电-放电循环后仍能保持其初始容量的 50%。Bubulinca 等人 [3] 对采用优化的无粘合剂技术制备的二元和三元自立复合正极材料进行了比较研究。使用聚(乙二醇)对异辛基苯基醚(Triton X-100)作为表面活性剂,制备了二元“岛桥”LiMn2O4/碳纳米管(LMO/CNT)复合材料和三元“构造板-岛桥”LiMn2O4/CNTs/石墨烯仿生结构。在
MiranMozetič教授于1961年出生于斯洛文尼亚的卢布尔雅那,并在斯洛文尼亚马里波尔大学获得了电子真空技术博士学位。自2009年以来,他一直是薄膜结构和等离子体表面工程研究团队的负责人,自2010年以来,他一直是斯洛文尼亚卢布尔雅那国际研究生院的教授。MiranMozetič教授为各种材料的血浆处理完成了以下出色的发明。首先,他开发了一种对聚合物复合材料的血浆处理方法,该方法可以直接电化学金属化并构建了生产线。每年生产超过3000万件,已有十多年来。射频发生器的创新耦合可以在批处理模式下均匀地处理众多产品。Mozetič教授开发的第二种技术是一种在大气压下在水中维持低压等离子体的方法。该方法基于通过超级浪费建立稳定的气泡。电极浸入气泡饱和压力下的气泡中。在这种压力下(与经典的大气压等离子体相比,OH激进分子的相对较长的寿命)和经过超级浪费气泡的水的快速速度可以使水中的病毒快速失活。第三个等离子体技术是在连续模式下具有氢血浆的金属的脱氧化。Mozetič教授开发了一种方法并构建了生产线。第四,Mozetič教授开发了一种快速激活氟化聚合物的方法。均匀的等离子体使用辐射发电机的四极耦合在10 m以上的反应器中维持,因为由于经典耦合不合适,因此由于对长线圈的绝大阻抗不合适。用特氟龙或类似材料制成的产品用氢血浆处理或多或少。真空紫外线辐射和氢原子之间的协同作用会导致C-F键的分裂,并在氟化聚合物表面形成非常薄的聚烯烃层。在第二步中,用中性氧原子处理产物,以确保这些疏水材料的超亲养表面饰面。Mozetič教授开发的第五个等离子技术用于在连续模式下处理种子。他构建了一个8米长的拖车,该拖车在农场用于种子,消毒和表面激活的排毒,从而使种子的超亲水表面饰面使种子的超亲水表面饰面,因此在播种后迅速吸收了水。种子处理设备的容量超过1吨/小时,并且通过通过垂直等离子体反应器掉落种子来实现治疗均匀性。发明记录在欧盟和/或美国办事处授予的20份专利中。Mozetič教授在期刊的科学会议或讲习班上合着了400多种科学文章,并给予了大约100篇被邀请的,主题演讲或全体讲座。他的科学成就为应用和工业项目提供了坚实的背景,他的专业正在提高创新的解决方案和建造大型低压非平衡等离子体反应堆,这些血浆反应堆已用于批量生产。