如果不采取行动,到 2050 年,全球每年的细菌数量将高达 1000 万。[2,6,7] 细菌附着在表面后,会继续生长并合成胞外多糖,而胞外多糖又会促进细菌粘附在表面和其他细菌上,从而增加了清除的难度。[5,8,9] 由此产生的生物膜以及抗菌药物耐药性增加,使得开发新的有效方法来最大限度地减少细菌传播和细菌感染率成为当务之急。[10,11] 新型抗菌材料可能有助于解决这一问题,它能防止细菌的初始粘附和/或利用杀生物剂杀死附着的细菌。然而,后者还有加速抗菌药物耐药性的风险,此外还有与铜或三丁基锡等杀生物剂有关的毒性。[9,12,13]
摘要在这项研究中,铝(Al)薄膜使用RF磁铁溅射技术沉积在SIO 2 /Si底物上,以分析RF溅射功率对微观结构表面形态的影响。采用不同的溅射RF功率(100-400 W)形成薄膜。使用X射线衍射模式(XRD),扫描电子显微镜(SEM),原子力显微镜(AFM)和傅立叶转换红外(FTIR)光谱研究,研究了沉积的Al薄膜的特征。X射线衍射(XRD)结果表明,低溅射功率的沉积膜具有无定形性质。通过增加溅射功率,观察到结晶。AFM分析结果表明,300 W的RF功率是增强最光滑的Al薄膜的最佳溅射功率。FTIR结果表明,不同的RF功率会影响沉积膜的化学结构。SEM结果表明,通过增加旋转功率,可以导致在底物表面形成孤立的纹理。总而言之,RF功率对沉积膜的性质,尤其是结晶和形状有重大影响。