摘要:目的:提出一种基于β-CD-CuNCs和多壁碳纳米管(MWCNTs)协同作用的新型信号增强策略,用于检测DNA氧化损伤生物标志物8-羟基-2'-脱氧鸟苷(8-OHdG)。方法:以β-CD-CuNCs-MWCNTs-nafion膜为载体构建传感器,成功用于抗坏血酸(AA)和尿酸(UA)等生物分子存在下8-OHdG的定量检测。为研究修饰电极的表面形貌,对裸电极和修饰电极进行了透射电子显微镜(TEM)、循环伏安法(CV)和电化学阻抗谱(EIS)测试。结果:差分脉冲伏安法(DPV)检测结果表明,8-OHdG的峰电流与浓度呈线性关系,浓度范围为1.0×10 -7~1.0×10 -6 mol/L(R 2 =0.9926)和1.0×10 -6~2.0×10 -5 mol/L(R 2 =0.9933),检测限(S/N=3)为33 nmol/L。结论:该传感器已成功用于人尿液中8-OHdG的测定,回收率较高。
摘要:本文旨在研发一种载阿司匹林双修饰纳米递送系统用于治疗肝细胞癌。本文采用“一锅两相成层法”制备介孔二氧化硅纳米粒子(MSN),以多巴胺自聚合形成聚多巴胺(PDA)作为pH敏感涂层。通过Michael加成反应将半乳糖胺(Gal)和活性靶向半乳糖胺(Gal)连接到PDA包覆的MSN上,合成半乳糖胺修饰的PDA修饰纳米粒子(Gal-PDA-MSN)。对所制备的纳米粒子的尺寸、粒径分布、表面形貌、BET比表面积、介孔尺寸和孔体积进行了表征,并研究了其体外载药量和药物释放行为。Gal-PDA-MSN具有pH敏感和靶向性。 MSN@Asp与PDA-MSN@Asp、Gal-PDA-MSN@Asp的释放曲线不同,PDA-MSN@Asp、Gal-PDA-MSN@Asp的药物释放随酸度增加而加快。体外实验表明,三种纳米药物对人肝癌HepG2细胞的毒性和抑制效果均高于游离Asp。该药物递送系统有利于控制释放和靶向治疗。
在相对极端的动态条件下,对基于玻璃悬臂的原型表面形貌接触探针进行了评估,该探针采用电容式测微技术来检测位移。该探针主要用于测量亚微米表面结构的低接触力,扫描速度远低于 1 rom SI。通过将其建模为二阶系统,可以预测其在更高速度下的行为,但尖端和表面之间相互作用的复杂性使人们对如何使用此类模型产生了疑问。因此,使用高精度空气轴承台扫描尖端下方的镍复制正弦表面轮廓。这允许在超过 1 m S-1 的速度和高于探针固有频率(约 280 Hz)的轮廓信号频率下对行为进行实验验证。在所有测试条件下,报告的输出非常一致,频率响应平坦至 1 dB 以内,最高可达 250 Hz 左右。结论是,探针技术可以令人满意地用于比传统表面计量仪器更高的速度下的测量。
从沉积物中提取环境DNA(EDNA)正在提供过去的生态系统和生物多样性的开创性观点。尽管有丰富的信息来源,但仍不清楚哪种沉积物有利于保存以及原因。在这里,我们使用原子力显微镜和分子动力学模拟来探索DNA-矿物质相互作用,以评估矿物学和界面地球化学如何在矿物底物上保护环境DNA中发挥作用。我们证明矿物组成,表面形貌和表面电荷会影响DNA吸附行为以及保存。建模和实验数据表明,如果存在强大的吸附驱动力,则可以通过矿物结合诱导DNA损伤。研究表明,对沉积物的矿物质组成的了解和环境条件对于评估沉积物是否能够存储细胞外DNA以及在多大程度上保留DNA。我们的数据增加了对Edna Taphonomy的理解,并强调了,对于某些矿物系统而言,碎片的DNA可能不代表旧的DNA。
同位素纯化半导体具有更高的热导率(κ),因此散热性能可能比天然的、同位素混合的半导体更好。但对于室温下的 Si 来说,这种好处很低,块状 28 Si 的 κ 仅比块状天然 Si(nat Si)高约 10%。我们发现,与这种块体行为形成鲜明对比的是,28 Si(99.92% 富集)纳米线的 κ 比具有相似直径和表面形貌的天然 Si 纳米线高出 150%。使用第一性原理声子色散模型,这种巨同位素效应归因于天然 Si 纳米线中同位素散射和声子表面散射的相互增强,通过将声子传输到原生非晶态 SiO 2 壳层来实现相关。这项工作发现了迄今为止报道的所有材料中室温下 κ 的最强同位素效应,并启发了同位素富集半导体在微电子领域的潜在应用。
同位素纯化半导体具有更高的热导率(κ),因此散热性能可能比天然的、同位素混合的半导体更好。但对于室温下的 Si 来说,这种好处很低,块状 28 Si 的 κ 仅比块状天然 Si(nat Si)高 ∼ 10 %。我们发现,与这种块体行为形成鲜明对比的是,28 Si(99.92% 富集)纳米线的 κ 比具有相似直径和表面形貌的天然 Si 纳米线高 150 %。使用第一性原理声子色散模型,这种巨同位素效应归因于天然 Si 纳米线中同位素散射和声子表面散射的相互增强,并通过声子传输到原生非晶态 SiO 2 壳层而相关。该信发现了迄今为止报道的所有材料中室温下κ同位素效应最强的材料,并启发了同位素富集半导体在微电子领域的潜在应用。
摘要:富 Ge Ge-Sb-Te 化合物具有较高的结晶温度,是未来相变存储器的理想材料,具有广泛的应用前景。本文,我们报道了通过金属有机化学气相沉积生长的自组装富 Ge Ge-Sb-Te/Sb 2 Te 3 核壳纳米线。核心富 Ge Ge-Sb-Te 纳米线通过气相-液相-固相机制自组装,由 Si (100) 和 SiO 2 /Si 基底上的 Au 纳米粒子催化;随后在室温下进行 Sb 2 Te 3 壳的保形过度生长,以实现核壳异质结构。利用扫描电子显微镜、高分辨率透射电子显微镜、X射线衍射、拉曼显微光谱和电子能量损失谱对富Ge Ge-Sb-Te核和富Ge Ge-Sb-Te/Sb 2 Te 3核壳纳米线进行了广泛的表征,以分析其表面形貌、晶体结构、振动特性和元素组成。
有机蛋白质因其独特的光学性质、卓越的机械特性和生物相容性而备受青睐。在有机蛋白质薄膜上制造多功能结构对于实际应用至关重要;然而,特定结构的可控制造仍然具有挑战性。在此,我们提出了一种通过调节有机材料的凸起和烧蚀在丝膜表面创建特定结构的策略。基于受控的超快激光诱导晶体形态转变和丝蛋白的等离子体烧蚀,产生了直径连续变化的独特表面形貌,如凸起和凹坑。由于不同周期的凸起/凹坑结构具有各向异性的光学特性,所制造的有机薄膜可用于大规模无墨彩色打印。通过同时设计凸起/凹坑结构,我们设计并展示了基于有机薄膜的光学功能装置,该装置可实现全息成像和光学聚焦。这项研究为多功能微/纳米结构的制造提供了一种有前途的策略,可以拓宽有机材料的潜在应用。
摘要:本文研究了利用廉价的细通道雾化CVD面对面加热板在c面蓝宝石衬底上生长α-Ga2O3薄膜的方法。由于高温会导致反应器变形,传统的细通道雾化CVD设备采用价格昂贵的抗变形AlN陶瓷作为反应器制作材料,限制了其推广和研究。本文采用面对面加热方式替代传统的单面加热方式,降低了对设备密封性的要求,因此可以用廉价的石英代替昂贵的AlN陶瓷制作反应器,大大降低雾化CVD设备的成本。研究了衬底温度和载气对α-Ga2O3薄膜晶体质量和表面形貌的影响。通过优化制作条件,获得了三角形晶粒,其边缘在原子力显微镜图像中清晰可见。通过吸收光谱分析,我们还发现该薄膜的光学带隙达到了5.24 eV。最后,我们在X射线衍射图中记录到了α-Ga 2 O 3 (0006)衍射峰的半峰全宽值为508角秒。
本研究致力于脉冲直流反应磁控溅射氧氮化铪 (HfOxNy) 薄膜的技术和优化。采用田口正交表法优化 HfOxNy 薄膜的制备工艺,以获得具有最佳电气参数的材料。在优化过程中,通过对以氧氮化铪为栅极电介质的 MIS 结构的电气特性监测介电薄膜的参数。还检查了制备的 HfOxNy 层的热稳定性。结果显示,热处理后制备的薄膜的电气参数有所改善。即,我们观察到有益的平带电压 (Vfb) 值、CeV 特性的频率色散消失、有效电荷 (Qeffi/q) 降低以及所检查的 MIS 结构界面陷阱 (Dit) 密度降低。然而,与参考样品相比,介电常数值略低。证明了 HfO x N y 层在高达 800 °C 的温度下具有优异的稳定性。尽管观察到层体中结晶相的显著增加,但未发现电气性能或表面形貌的恶化。本研究的结果使所研究的采用脉冲直流反应磁控溅射制备的 HfO x N y 成为 MIS 结构和器件中栅极电介质的可能候选者。