Suwabun Chirachanchai 教授作为泰国政府派出的留学生来到日本,学习了日语后,于1982年进入东京学艺大学附属中学就读。 1985年通过普通入学考试考入大阪大学工学部,1989年毕业。后在工学研究科师从竹本喜一教授取得硕士学位,后在朱拉隆功大学石油化学研究科工作。次年回国师从竹本喜一教授,1995年取得工学博士学位。回国后,历任讲师、助教、副教授,2009年晋升为教授,并于2016年至2020年担任研究生院院长至今。我们通过众多国际会议、研讨会和讲座等学术交流活动积极参与持续的国际交流。他不仅活跃在泰国,还担任美国凯斯西储大学、广岛大学、比利时蒙斯大学的客座教授,以及NEDO Moonshot国际评估委员会委员,充分运用从小培养的英语能力,在国际上活跃。其发表的150多篇学术论文多篇发表于国际知名学术期刊,考虑到他任职时泰国高分子科学尚未扎根的状况,其学术贡献令人惊叹。在研究方面,我们专注并持续致力于环境友好的功能高分子材料的开发。他发现了一种独特的溶解方法(水溶性壳聚糖),该方法涉及与水溶性难溶的天然多糖壳聚糖形成离子复合物,该方法得到了许多研究人员的高度评价。 Chirachanchai 教授一直致力于通过增强可生物降解聚合物的功能性来开发环境友好的功能高分子材料,并报告了多种原创性和创新性的研究成果。在泰国,有效利用从蟹壳和虾壳中提取的甲壳素和壳聚糖是一个重要课题,但由于它们的水溶性差,因此仅限于在酸性水溶液或有机溶剂中进行化学反应。他发现缩合反应促进剂1-羟基苯并三唑与壳聚糖形成离子配合物,从而使其溶解于中性水溶液中,并证明了多种缩合反应可在一个步骤中实现。由此开创了“水溶性壳聚糖”这一新领域,并带动了多种高功能材料的诞生。此外,还开发了一种赋予聚醚醚酮质子可转移性的新型表面改性方法。
心血管疾病(CVD)是世界上最常见的疾病之一,具有高致病性和高死亡率的特点(Vong等,2018;Wang等,2022a;Qian等,2021)。CVD的临床治疗主要包括三种方式:药物治疗,这是最广泛的治疗方式,也是CVD治疗的基础;介入治疗,包括射频消融和心脏起搏治疗;外科治疗,包括搭桥治疗和心血管移植(Abdelsayed等,2022;Lunyera等,2023;Krahn等,2018)。血管移植主要用于恢复或建立新的血流通路,以维持或改善组织或器官某个区域的血液循环,例如因创伤或切除导致血管段缺损,或动脉栓塞或淋巴阻塞而需要“搭桥”形成循环系统的情况(Xing et al.,2021;Zhao et al.,2023)。血管移植要求供应血管具有与受体血管相同的外径和足够的长度。移植物也面临供区血液循环受损(缺血或淤滞)等问题。因此,迫切需要高性能的人工血管移植来替代自体血管进行血流重建。目前小口径人工血管(<6 mm)主要用于冠状动脉搭桥术、外周血管搭桥术、血管创伤(缺损≥2 cm)、血液透析的组织血管通路、器官功能恢复等(Asakura等,2019;Wang等,2021;Wu等,2018),但人工血管移植可导致吻合口血栓形成、内皮增生等严重并发症,影响管腔通畅性(Oliveira等,2020;Teebken和Haverich,2002;Zhuang等,2020)。此外,目前的人工血管支架虽然具备一定的力学性能和生物相容性或能提供血管再生所需的生化信号,但在模拟天然血管的结构和功能方面还存在明显的不足,现有的支架往往不能充分模拟天然血管网络的拓扑结构,并会诱导细胞爬行,从而影响血管支架在临床应用中的效果(Liang等,2016;Cheng等,2022)。因此,为提高小口径人工血管的通畅性,通过材料选择、表面改性等提高生物相容性/内皮化/力学性能成为重点研究方向。静电纺丝技术可以制备具有高比表面积和孔隙率的微/纳米纤维,可以模拟细胞外基质,促进细胞黏附、增殖和分化,为细胞提供良好的生长环境。该接收装置的设计可以制备不同直径的管状结构,是制备小直径人工血管支架的理想方法(姚等,2022;郭等,2023;宋等,2023;王等,2022b)。特别是利用该技术制备的血管支架可以负载生物因子,提高血管支架的生物相容性,促进血管快速内皮化。虽然目前的人工血管支架已经具备一定的力学性能、生物相容性或能提供血管再生所需的生化信号,但如何结合现有支架的优势,将生物因子负载于血管内,实现血管再生,是当前血管支架研究的热点。
摘要:从全球来看,癌症治疗仍是一个主要问题。随着纳米技术的最新发展,基于层状双氢氧化物 (LDH) 的纳米系统因其 pH 依赖性生物降解性、优异的生物相容性、易于表面改性、阴离子交换容量和高化学稳定性而受到特别关注,为癌症治疗带来了巨大的潜力。通过将无机、有机或生物分子插入其层状晶格中,可以从层状双氢氧化物 (LDH) 开发出具有双重或多功能特征(包括抗癌能力)的新型混合材料。尽管已经发表了出色的研究,但很少有综述论文讨论这些重要且有希望的发现,以刺激基于 LDH 的纳米系统在癌症治疗领域的持续发展。因此,本文研究重点关注基于 LDH 的化疗纳米系统在癌症治疗方面的最新进展。本综述中使用的信息来自之前发表的研究,并从多个期刊渠道检索而来。这些报告讨论了基于层状双氢氧化物的化疗纳米系统在癌症治疗中的应用。研究表明,层状双氢氧化物可用于开发单一或复合纳米系统,以精确分配治疗成分,而不会对纳米医学领域造成累积损害。 DOI:https://dx.doi.org/10.4314/jasem.v27i4.24 开放获取政策:JASEM 发表的所有文章均为 AJOL 支持的 PKP 下的开放获取文章。文章发表后立即在全球范围内提供。无需特殊许可即可重新使用 JASEM 发表的文章的全部或部分内容,包括图版、图表和表格。版权政策:© 2022 作者。本文是根据知识共享署名 4.0 国际 (CC-BY-4.0) 许可条款和条件分发的开放获取文章。只要明确引用原始文章,即可在未经许可的情况下重新使用文章的任何部分。引用本文为:OMONMHENLE,S. I;IFIJEN,IH (2023)。基于层状双氢氧化物的化疗纳米系统在癌症治疗中的进展。应用科学杂志。环境。管理。27 (4) 815-821 日期:收到日期:2023 年 2 月 7 日;修订日期:2023 年 3 月 18 日;接受日期:2023 年 3 月 28 日出版日期:2023 年 3 月 31 日关键词:层状双氢氧化物;纳米系统;癌症治疗;耐药性由于定制或靶向治疗等替代疗法的出现,癌症的治疗方法已经发展(Maliki 等人,2022 年;Ifijen 等人,2022 年),但它们仍然有很多缺点。光疗法(Ifijen et al., 2023a; Ifijen et al., 2023b)由于其高度选择性,是最有前景的治疗方法之一,可相对容易地用于治疗甚至深层癌症,例如肝肿瘤。光疗中使用的两种主要治疗方法是光热疗法 (PTT) (Zhong et al ., 2021) 和光动力疗法 (PDT) (Perni et al ., 2021),后者利用光产生治疗性活性氧 (ROS) (Algorri et al ., 2021)。这些治疗方法通常用于增加总
丹麦奥胡斯大学跨学科纳米科学中心 (iNANO) 提供生物传感纳米等离子体学博士后职位 丹麦奥胡斯大学 iNANO 中心纳米生物界面小组 (www.inano.dk/sw16190.asp) 提供生物传感纳米等离子体学博士后研究职位,即日起开始。该职位为期 1 年,可能再延长 2 年(1+2 年)。该项目重点研究光刻生产的纳米粒子中的等离子体杂化。通过纳米级制造在金属和金属电介质中控制纳米粒子的耦合 [1-3],并用于理解和利用等离子体杂化来设计纳米光学生物传感器。将通过将纳米等离子体装置与大分子纳米图案 [9] 相结合,开发用于折射率传感 [4- 7] 和表面增强光谱检测 [8] 的纳米装置。成功的申请者应拥有纳米科学、物理学、表面化学或相关学科的博士学位,并有成功的科学记录。拥有等离子体、纳米制造、表面改性和/或纳米级表征方面的经验将是一种优势。跨学科研究中心 (iNANO) (www.inano.dk) 是位于奥胡斯大学的一个主要研究和教育中心,拥有 60 名高级科学家、约 100 名博士后和约 120 名博士生。该中心结合物理学、化学、分子生物学和医学领域的专业知识和师资,开展世界一流的跨学科研究。该中心提供广泛的基础设施、工具和专业知识,包括新启用的洁净室。该中心设有 5 年制纳米技术本科课程和纳米科学研究生院 (www.inanoschool.dk),提供全方位的教育环境。除了庞大的基础研究基础外,该中心还拥有大量正在进行的工业项目和合作伙伴关系。如需了解更多信息,请联系 Duncan Sutherland 副教授 (duncan@inano.dk,电话 +45 89 42 55 47)。潜在候选人应将其简历和完整出版物清单发送至 duncan@inano.dk 1. A. Dmitriev、C. Hägglund、S. Chen、H. Frediksson、T. Pakizeh、M. Käll 和 DSSutherland Nano Letters 8 (11) 3893-3898 (2008) 2. A. Dmitriev、T. Pakizeh、T. Rindzevicius、M. Käll 和 DS Sutherland Small 3 2 294-299 (2007) 3. H. Fredriksson、Y. Alaverdyan、A. Dmitriev、C. Langhammer、DSSutherland、M. Zäch 和 B. Kasemo Advanced Materials 19:23 4297- 4302 (2007) 4. EM Larsson、J. Alegret、M. Käll 和DSSutherland Nano Letters 7 (5) 1256-1263 (2007) 5. A. Dahlin, M. Zach, T Rindzevicius, B.Kasemo, M. Käll, DS Sutherland 和 F. Höök 美国化学学会杂志 127 (14): 5043-5048 (2005) 6. R.Toftegaard, J. Arnbjerg、PROgilby、A. Dmitriev、DSSutherland、L. Poulsen Angew。化学。国际。埃德。 47:32 6025-6027 (2008) 7. H.阿盖利,J. Malmstrom, EM Larsson, M. Textor 和 DS Sutherland Nano Letters 6 (6): 1165-1171 (2006)
实用产品开发。锂离子电池已成为替代镍氢电池的主要候选者,然而,对续航时间更长、充电速度更快、续航里程更远的电动汽车的需求,使得后锂离子电池材料、结构和系统的研究变得多样化[1-3]。一种潜在的、有吸引力的替代品是固态电池;其前提是用固态离子导体取代锂离子电池中常见的有机液体电解质[4,5]。宽电化学窗口、不可燃性以及实现锂金属阳极的潜力是将固态电池推向下一代储能前沿的优势。然而,要与传统的液体电解质竞争,实现高锂离子电导率是一个巨大的挑战。固态离子领域发展迅速,各种能够在中等温度下实现快速锂离子传输的锂离子导体正在实现下一代电化学存储。聚合物、凝胶、熔融盐和陶瓷电解质在集成到实际设备中时各有优势,也面临挑战;然而,硫化物基电解质已成为有力竞争者,其电导率可匹敌甚至超越有机液体电解质 [6]。LGPS、Li 7 P 3 S 11 玻璃陶瓷、银锗石 Li 9.54 Si 1.74 P 1.44 Cl 0.3 是表现出优异 Li + 电导率的电解质例子,尽管在电化学窗口和抵抗锂金属强还原电位的能力方面结果不一[5,7-9]。Sakamoto 等人 [10] 通过拉曼光谱证明了硫代磷酸锂 Li 3 PS 4 在与对称 Li-Li 电池循环后还原形成 Li 2 S 和 Li 3 P 产物,这已通过原位 XPS 实验证实并通过 DFT 计算进行预测 [11,12]。研究表明硫化物电解质还会与高压正极发生反应,形成的薄界面足以降低电池容量和循环能力。为实现该技术,用 LiNbO 3 进行表面改性可以阻碍化学交叉扩散并减少空间电荷层的锂损耗 [13]。高能正极研究对于实现全固态锂电池至关重要。硫作为高能量密度正极的出现是正极、电解质和隔膜技术的产物,旨在实现高倍率下的可逆容量。硫的优点是理论容量高(1675 mAh g -1 ),这平衡了低平均正极放电电位(~2.0 V),从而产生高理论能量密度(~2600 Wh kg -1 )。然而,必须克服重大挑战,例如硫和多硫化物溶解在电解质中,有机电解质的持续分解以及锂金属的树枝状生长。其结果是无法在长时间循环过程中保持容量,而解决方案则是采用精妙的材料设计和工程来封装和保护活性材料。碳、聚合物和隔膜技术在实现高负载和可持续硫正极方面都发挥了至关重要的作用 [14-16]。或者,更换有机液体电解质可以提供一条多方面的途径来解决持续的 SEI 形成和多硫化物溶解问题,因此固态 Li-S 电池有可能拥有出色的循环寿命。事实上,利用固体电解质已显示出无需封装活性材料就能提高容量保持率,这为高负载活性材料以增加能量密度并降低成本铺平了道路 [17-20]。为了实现这样的改进,阐明放电机制将加深对电化学反应的理解,并为进一步改进扩大电池电极所需的设计和工艺提供见解。在这里,我们通过分离碳、固态电解质(非晶态 Li 3 PS 4,LPS)和硫/硫化锂这三种基本成分的反应性,研究了固态硫阴极复合阴极的制备过程如何影响电化学放电。研究人员最近意识到