环氧树脂广泛用于电路板层压板、结构复合材料、粘合剂和表面涂层 [1]。热固性聚合物的交联度更高。环氧树脂具有更好的机械、物理和摩擦学性能,因此被用于结构应用。环氧树脂具有高模量、抗疲劳、低蠕变,并且在高温下也能很好地工作 [2-4]。交联密度越高,断裂韧性、抗裂纹起始和生长的刚度越低,这反过来限制了环氧树脂在现代应用中的使用 [5]。在环氧树脂固化过程中,交联链中会产生应力,这会降低断裂韧性、降低抗裂纹起始能力以及由于塑性变形而限制空隙的增长 [6,7]。通过改变环氧树脂的组成并混合不同的纳米填料作为第二阶段,可以应对这些挑战,从而实现高级复合材料应用 [8,9]。环氧树脂与纳米填料的混合可提高断裂韧性、刚度和强度[10]。这些纳米填料包括无机纳米颗粒,如粘土[11]、Al2O3[12]、ZrO2[13,14]和TiO2[4]。加入无机纳米填料如碳纳米管[15]和SiO2[5]后,表现出良好的机械性能,有趣的是,环氧树脂的韧性增加了,而基本性能没有改变。基质形态的变化主要是由于纳米填料渗透到致密的环氧交联网络之间。在目前的研究中,我们尝试生产SiO2/环氧树脂纳米复合材料。选择超声波技术,通过改变纳米填料的浓度来改变填料的粒径。
热电技术近年来由于对可持续能源和有效的冷却系统的需求不断增长,因此目睹了近年来的复兴。最近,使用无毒的,丰富的材料(包括P型MGAGSB和N -Type Mg 3(SB,BI)2标志着显着突破的无毒热模块。尽管表现有希望,但关于长期鲁棒性和稳定性的问题仍然存在,尤其是在恶劣的环境中。在这项研究中,对热电模块进行了彻底的探索,重点是在各种条件下的性能降解。通过元素映射分析,在氩气环境中循环过程中的模块中鉴定了降解机制,在氩环境中,原子迁移和在接触区域的复杂氧化物形成是关键因素。此外,空气中的骑自行车测试揭示了显着的降解,从而促进了保护策略的探索。使用原子层沉积(ALD)出现的表面涂层作为一种有希望的解决方案,尤其是HFO 2,表现出了出色的保护作用。此外,还发现了重新销售的恢复模块性能,强调了开发高级焊接技术以推广基于镁的热电技术的重要性,作为BI 2 TE 3的可持续替代方案。这些发现强调了探索新型接触材料的重要性,并证明了ALD作为增强模块可靠性和鲁棒性的普遍方法的潜力。
摘要:添加剂制造(AM)彻底改变了整个行业的生产,但是Challenges持续达到最佳零件质量。本文研究了加工技术的增强,以提高AM生产成分的整体质量。本研究着重于优化各种后处理方法,以解决诸如表面粗糙度,尺寸准确性和材料特性等普遍问题。通过广泛的综述,本文确定并评估了一系列后处理方法,包括热,化学和机械处理。特别关注它们对不同类型的添加剂制造技术的影响,包括选择性激光烧结(SLS),融合沉积建模(FDM)和立体造影术(SLA)及其专用的原材料。这些发现突出了量身定制的后处理方法在缓解固有缺陷,优化表面饰面和增强机械性能的意义。此外,本研究提出了新的后处理程序,以实现卓越的质量,同时最大程度地减少制造时间,基础设施和材料成本。整合了后处理技术,例如清洁,表面饰面,热处理,支撑结构去除,表面涂层,电抛光,超声处理,超声处理和热等静态压力(髋关节),就像添加剂制造工作流程中的台阶一样,可以极大地朝着这一方向做出贡献。本文中所显示的结果不仅为有关后处理方法的知识发展做出了宝贵的贡献,而且还为有兴趣改善增材制造过程质量标准的制造商和研究人员提供了实际的影响。
在这项研究中,木质素(一种关键的木材成分)用作纸张涂料的主要材料。主要由纤维素和半纤维素组成的纸,通过使用植物性木质素获得了额外的价值,从而产生了单一的产品,强调了利用植物性材料的增强价值。该木质素与Bloom Biorewables Ltd.在商业开发的产品中使用乙二醇(GA)进行了功能化,并与EPFL 1合作。醛辅助分级(AAF)过程使用GA作为保护组,保留木质素的羟基官能团并防止碳 - 碳键形成,同时还引入了羧酸基团,这些羧酸群充当多功能处理方法,以进一步修饰或热质物质开发。在这里,木质素的羟基和碳酸官能团对环氧化物的反应性利用了涂料的优势,从而增强了底物的疏水性和耐油性。添加了双氧化物交联,聚(乙二醇)二甘油乙醚(PEGDE)或甘油二甘油二甘油乙醚(GDE)2,有助于改善与Ga-LignInglignin coating相比,与Ga-lignInglignin coating相比,在多孔纸样本中更好地提高了纸板的表面涂层。通过SEM分析观察到的完美无瑕涂层是通过双层涂层方法(无论是使用PEGDE还是GDE交联)来实现的。此外,证明这些涂层显着增强了纸板对油和水的屏障特性,而双层涂层样品表现出特别出色的油性耐药性。此外,基于Ga-Lignin的涂层的应用导致纸板的拉伸强度和弹性增加。
■ 摘要背景:源自炎症、饮食和环境的基因毒物可以共价修饰 DNA,可能引发致癌过程。DNA 加合物早已为人所知,但旧方法一次只能针对少数已知 DNA 加合物,无法提供“DNA 加合物组”的整体图景。DNA 加合物组学是一个新的研究领域,旨在通过高分辨率质谱 (HRMS) 筛选未知的 DNA 加合物。然而,DNA 加合物组学带来了一些分析挑战,例如需要高灵敏度和开发有效的筛选方法来识别新的 DNA 加合物。结果:在这项工作中,通过使用超高效液相色谱 (UHPLC) 通过 ESI 源耦合到四极杆飞行时间质谱仪器,开发了一种灵敏的非靶向 DNA 加合物组学方法。含有碳酸氢铵的流动相可产生最佳信号增强效果。MS 毛细管电压、锥孔电压和检测器电压对 DNA 加合物的响应影响最大。选择低吸附小瓶以减少分析物损失。测试了混合表面涂层分析柱以减少 DNA 加合物的吸附。通过执行 MS E 采集(全离子碎片采集)并筛选脱氧核糖和核碱基碎片离子的损失,采用优化方法分析小牛胸腺、猫结肠和人类结肠 DNA 中的 DNA 加合物。初步鉴定了 54 种 DNA 加合物,其中 38 种以前从未报道过。意义:这是第一项针对人类结肠组织的非靶向 DNA 加合物组学研究,也是文献中报告鉴定如此多未知物的少数非靶向 DNA 加合物组学研究之一。这表明,这种敏感方法在未来的人类研究中应用于研究新的潜在致癌因素将带来有希望的结果。
带有2D材料的膜表面涂层已显示出用于水处理应用的防婚特性。但是,目前基于真空过滤的合成方法不容易缩放。本研究描述了一种可扩展的方法,可用于涂层膜,包括氧化石墨烯(GO),六边形硝酸氢硼(HBN),二硫化钼(MOS 2)和二硫化钨(WS 2)。使用含氧剂将含有每类2D薄片的异丙基醇溶液喷涂到商业聚偏氟化物(PVDF)上。纳米材料用聚多巴胺(PDA)作为一个可以轻松地集成到可扩展的滚动过程中的方法中的交联。使用扫描电子显微镜,原子力显微镜,接触角,拉伸强度测量和傅立叶转换红外光谱法评估了形态,表面粗糙度,疏水性,机械耐用性和化学组成的变化。在72 h的膜蒸馏(MD)实验中测试了2D纳米材料涂层的膜,并将其与原始的PVDF和PDA/PVDF膜进行了比较。使用高浓度的腐殖酸(150 ppm)和石蜡油(200 ppm)的盐排斥和MD性能稳定性评估,从而模拟了从油气萃取中模拟简单的有机废水。通量下降比以每小时渗透率损失百分比(%/h)来衡量,以便将来与不同的实验时间进行比较。所有膜的盐分排斥很高(> 99.9%)。原始的PVDF膜在10小时后因结垢而导致孔隙润湿失败,而PDA/PVDF膜的通量下降率最大(0.3%/小时)。涂有GO和HBN的膜的通量下降比较低(分别为0.0021±0.005和0.028±0.01%/h)。Go涂层的膜是唯一能够治疗含有表面活性剂和含有污垢的饲料的膜类型。改进的性能归因于表面粗糙度和疏水性的降低,这降低了污垢表面上的污垢吸附。这项工作显示了一种可延展的可扩展方法来克服MD中的犯规限制。
摘要 纳米技术是本世纪初发展迅速的先进科学领域。先进材料、聚合物的纳米技术主要围绕在亚原子水平上设计材料以在自然可见的水平上实现诱人的特性和应用的努力。纳米技术可用于技术进步,从通信和信息、健康和医学、未来能源、环境和气候变化到交通和文化遗产、个人防护设备 (PPE)、燃料、燃料电池、生物传感器、疾病传感器等。纳米材料将带来一种制造材料和设备的新方法。更快的计算机、先进的药物、受控药物输送、生物相容性材料、神经和组织修复、防裂表面涂层、更好的皮肤护理和保护、更高效的催化剂、更好更小的传感器、甚至更高效的电信。例如,一种使用抗体修饰的铋纳米粒子的低风险解决方案,结合与胸部 X 光剂量相当的 X 光,已被证明可以杀死常见的细菌铜绿假单胞菌,其装置设计为模拟人体组织中的深层伤口。纳米金粒子可以比以前已知的任何物质更好地催化一氧化碳的氧化。肝素功能化纳米粒子已被用于抗疟疾药物的靶向输送。与涉及抗体的治疗相比,肝素丰富且价格低廉,这是一个重要的考虑因素,因为疟疾在发展中国家最为常见。已经开发出一种骨修复纳米粒子糊剂,有望更快地修复骨折和断裂。含有两个生长基因的 DNA 被封装在合成的磷酸钙纳米粒子内。在纳米工程极限的一次非凡展示中,研究人员使用扫描隧道显微镜的尖端切割并形成复杂分子中的选定化学键。许多医药和工业领域都已使用纳米技术。纳米颗粒可以附着在 SARS COV-2 病毒上,破坏其结构,从而杀死病毒。这些以及其他纳米技术的最新进展将在本次会议上展示。
CONSPECTUS:现代研究的一个前沿领域专注于新兴的可植入生物电子设备,这些设备具有独特的操作模式,既与研究研究有关,也与医疗实践有关。这些先进技术有可能实现与各种疾病相关的革命性诊断和治疗能力,无缝集成到重要器官表面可以实现准确的感知、刺激,甚至同时感知和刺激。用于组织状界面的材料(例如水凝胶)至关重要,这些材料能够实现这些技术平台和生命系统之间的软机械耦合和多功能双向交换。功能性水凝胶在这方面具有重大前景,正如最近展示的夹层所示,这些夹层支持光学、机械、电气、光学、热和生化相互作用模式,在活体动物模型中具有长期生物相容性和稳定功能。本报告重点介绍了水凝胶材料的最新进展,这些材料可作为生物电子系统和软组织之间的界面,以促进植入并支持感知和刺激。内容包括允许生物电子集成的材料概念、成分、化学和结构。用作界面粘合剂和表面涂层以支持机械、电、光、热和/或化学耦合突出了广泛的选择范围。本报告首先介绍了利用先进化学技术控制内出血、预防细菌感染和抑制异物反应的水凝胶。后续章节总结了利用水凝胶力学(例如其机械、可调模量、润滑表面和界面粘附特性)促进生物电子和生物系统之间相互作用的策略。功能特性的讨论从不同类型的导电水凝胶的电导率及其长期稳定性开始,并应用于生物电子传感和刺激。接下来的章节重点介绍了光学、热和化学特性,也涉及设备操作。最后一段关于化学的内容概述了最近开发的光固化和生物可吸收水凝胶粘合剂,它们支持与软生物组织的多功能界面。最后几段强调了先进生物电子设备水凝胶材料科学研究的剩余挑战和机遇。
雌激素调节鱼和其他脊椎动物中的许多生殖过程。在鱼类中,大脑,垂体和肝脏是脑垂体 - 甲状腺肝轴雌雄同体的主要作用部位。在脑因子的影响下,垂体合成促性腺激素,在雌性鱼类中,促促性蛋白刺激雌二醇的合成,从而刺激肝脏中的卵巢生成(1,2)。雌激素还通过大脑和垂体中的反馈机制来调节促性腺激素的合成并释放(3-5)。因此,作用在雌激素靶组织(例如肝脏和垂体)上的雌激素化合物有可能干扰鱼类的生殖过程。在过去的几十年中,环境中的内分泌破坏化学物质(EDC),尤其是模仿人为化合物(Xenostrogens)的雌激素,引起了人们对它们对人类和野生动植物健康的潜在影响的担忧(6,7)。工业化合物,例如增塑剂双酚A(BPA)和药物雌激素乙基甲二醇(EE2),是在环境中无处不在的内分泌干扰物中广泛研究的(8-12)。BPA是一种高生产量工业化学化学化学物质,主要用于制造塑料产品和使用的环氧树脂,例如,食品包装金属罐的表面涂层(13)。BPA已被证明具有雌激素作用,也可能导致代谢破坏(14、15)。最近的研究还报道说,许多BPA替代方案具有与BPA相似的内分泌干扰作用(13,16)。ee2用于避孕药中,经常在家庭污水中检测到,并可能污染水生环境(17 - 19)。ee2是一种有效的雌激素,许多研究都记录了其内分泌干扰作用,例如卵黄蛋白的合成增加,男性鱼类女性化,生育率降低和人口下降(12,20 - 20 - 26)。大多数研究都研究了这些EDC在鱼类中的分子效应,主要使用有限的生物标志物(例如植物生成素)(27,28)。虽然雌激素反应式生物标志物在暴露于雌激素方面具有丰富的信息,但它们提供了有限的有关影响的潜在目标和过程的信息。最近的一些基于转录组的研究表明,OMICS确定可能提供更多见解
二氧化钛(TIO 2)最近引起了极大的关注,这主要是由于骨科和纳米材料科学的交集。这种感兴趣的激增可以归因于良好的理解,即Ti金属在暴露于大气条件时会经历表面氧化,最终导致外部面上强大的天然Tio 2层的形成。诸如阳极氧化等技术进一步增强了这一过程,从而导致了在生物学上兼容和成骨的钝化表面涂层的发展。纳米材料化学的进步在该结构域中至关重要,从而使TIO 2结构的受控组装(包括纳米纤维和纳米管)具有受控组装。此外,已经确定了特定的合成方法,可以产生具有分层结构的钛酸簇,这有利于磷灰石形成 - 天然骨组织的无机复合物。也值得注意的是,二氧化钛具有反应并转化为钛纳米管或纳米线的能力。这种特征已被证明是有益的,因为它已被证明可以促进与体液的离子交往相互作用,从而支持骨组织生长。具体来说,当将钛材料放入模拟的体液中时,离子交换开始并鼓励羟基磷灰石的产生,羟基磷灰石是天然骨的基本成分。纳米材料化学丰富了这一研究领域,许多实验室已经研究了结构控制TIO 2的形态,例如纳米纤维和纳米管[11,12]。这种产生的离子层结构作为阳离子储层起着至关重要的作用。已经确定了合成方法中的进步来产生钛酸盐材料,这些材料由它们的粘土状晶格(由边缘共享TIO TIO 6八面体组成)与阳离子实体散布在一起[13]。这种分层结构特别有利于模拟体液(SBF)中的磷灰石形成。更具体地说,涉及粉状TIO 2矿物质的热液反应,例如假酶和氧化钠或氢氧化钾溶液,会根据反应条件而产生Na-或K- titanate纳米管或纳米线。它有助于体液中发现的阳离子的离子交换,因此自主维持阳离子平衡原位,这对于骨组织生长至关重要。在SBF环境中,Na/k- titanate和钙(Ca 2+)之间的浓度梯度促使具有Ca 2+的单价Na +或K +离子的离子交换。这为随后的相互作用设定了阶段:磷酸盐阴离子的协调{即(PO 3)3-,(HPO 3)2-和(H 2 PO 3) - 从体液与泰坦酸盐结合的Ca 2+的体液中的(H 2 PO 3) - }。这种相互作用的顶点是形成水合磷酸钙或羟基磷灰石的形成,羟基磷灰石是天然骨的必不可少的基础[13]。