摘要 - infrared(ir)成像系统是用于监测热核融合设备(Tokamak)中务件组件的常见诊断。然而,由于存在多种反射,并且随着融合操作的进行,完全金属环境中的IR解释是复杂的。这会导致表面温度测量的高误差,这是机器保护的风险。本文提出了模拟辅助机器学习方法的首次演示,该方法是从IR测量中检索表面温度的,对具有未知性能的金属靶标。该技术依赖于确定性射线示踪剂生成的合成数据集上的卷积神经网络的训练。考虑到纯镜面的Tokamak原型,这种方法的性能首先得到证明。
Nonoyama 博士将凝胶融入了一件类似摩托车赛车服的防护运动服中。在赛车服中,一种由玻璃纤维织物和热硬化水凝胶制成的材料在沥青上进行了测试。当织物复合材料以 80 公里/小时的速度在沥青表面拖行 5 秒时,复合材料的表面温度升至 90°C。这个温度不仅足以引起硬化转变,而且织物的损坏程度比使用热软化水凝胶制成的同等织物要小。测试后,热硬化织物 82% 的重量完好无损,而对照织物只有 12%。值得注意的是,这种热敏智能保护器能够在交通或运动事故中保护人们的衣服和身体。
在智利的气候下评估了耦合模型间比较项目6(CMIP6)下36个新状态的合奏 - 艺术气候模型的抽象降水和近表面温度。分析集中在四个不同的气候子区域:北智利北部,智利中部,巴塔哥尼亚北部和巴塔哥尼亚南部。在每个子区域上,首先,我们评估了整个全球气候模型(GCM)的性能,以在历史时期(1986- 2014年)(1986- 2014年)中的降水和温度观测的栅格数据集,然后分析模型的预测,即对于四个不同的共享社会经济路径(2080-2099)(2080-2099)(2080-2099)。尽管模型的特征是一般湿和温暖的平均偏见,但它们实际上是不同子区域的主要时空气候变异性。但是,对于降水和温度,所有模型均不是所有子区域中最好的。是根据泰勒技能得分定义的最佳性能模型,人们发现所谓的“热模型”可能表现出高估的气候灵敏度,这表明使用这些模型来访问智利未来的气候变化时要谨慎。我们发现,在变化方向上有强大的(90%的模型在变化方向上达成共识)预计中央智利平均降水量减少(〜-20至〜-40%)和北部的巴塔哥尼亚北部(〜-10至10至〜-30%)(〜- 10至〜-30%),在情景SSP585下,在SPSSP245上的变化在SPSSP245上的变化很大。北部智利和南部巴塔哥尼亚南部显示了整个模型中降水的不变变化。然而,未来的近表面温度变暖呈现了整个子区域的高模块间一致性,其中最大的增量发生在安第斯山脉沿线。北部智利在SSP585中显示出最大〜6°C的最大增量,然后是中央智利(最高〜5°C)。北部和南部的巴塔哥尼亚均显示出相应的增量,高达〜4°C。我们还简要讨论了这些未来变化对智利的环境和社会经济含义。
(1)澳大利亚统计局(2021)地区人口2019-20财务年,澳大利亚联邦,澳大利亚,澳大利亚,澳大利亚。(2)环境,土地,水和规划部(2019)未来的维多利亚州2019年,澳大利亚墨尔本环境,土地,水和规划部。(4)环境,土地,水和规划部(2020)墨尔本工业和商业土地使用计划,维多利亚州,澳大利亚墨尔本。(5)环境,土地,水和规划部(2018)澳大利亚墨尔本维多利亚州土地表面温度数据。(6)Clarke JM,Grose M,Thatcher M,Hernaman V,Heady C,Round V,Rafter T,Trenham C&Wilson L.(2019)。维多利亚时代的气候预测2019技术报告,CSIRO,澳大利亚墨尔本。
低温过程在减少条件下促进了Fe耗尽:我们检查了古代火星地形低表面丰度的时空分布,表明Fe的丰度随着较早的Noachian地形而升高,但在较年轻的Noachian地形中具有升高(图。1)。逻辑假设较高的高程或较高的纬度经历了较冷的温度。因此,在诺阿切(Noachian)地形中,表面Fe的丰度与升高或纬度之间的相关性表明表面温度可能影响了表面的Fe丰度。fe丰度随着海拔/纬度的增加而降低,这表明低温条件促进了Noachian时期的Fe耗竭。
摘要。这项研究的主要目的是使用Monte Carlo方法估算表面温度测量的不确定性。计算基于一组具有共同加热壁的平行微型通道中流体流动过程中传热的实验研究。使用红外热力计和K型热元同时进行加热壁表面上的温度分布。红外热成像是非接触式温度测量方法,而热元测量是接触方法(在选定点的测量)。提出并讨论了两种温度测量方法的示例结果。在计算中,使用蒙特卡洛方法来估计表面温度测量不确定性的不确定性。对蒙特卡洛模拟结果和不确定性扩散方法进行了比较分析。发现从这两种方法获得的结果是一致的。
系数的量度测量建筑物的复合结构元件的能力(例如由砖,隔热材料,腔等组成的墙壁。;瓷砖,木材,绝缘材料等)传递(因此抵抗热的传播);这是热量的数量,将从结构的一侧流动到单位区域另一侧的空气,以使单位温度差为单位时间:u = w/m²k。注释1 U型屋顶,墙壁等,给出了单个建筑物的热性能的量度。注2在某些国家/地区,R型或R值(热电阻)在数学上是U值的倒数,但是在确定材料的内部和外部表面温度的确定中,不是对u-value的内部和外部表面温度,而不是u-value,则是u-value的u-value,是u-value的u-value,是u-value的测量值,是u-value的测量值。
厄瓜多尔三个自然保护区的碳储存作为环境服务 Iván Palacios、Betty Castro、Fabián Rodríguez ………………………………………帕洛拉走廊绘画工业原材料研究- 莫罗纳省的圣胡安·博斯科·圣地亚哥 Edgar Pino、Marco Mejía、Jazmín Jaramillo ………………………………………… 通过分窗算法计算表面温度来确定普纳岛虾池中白斑病毒易发区域 Karol Arrellano、Pablo Padilla、Iñigo莫利纳……………………………………地面控制点配置研究使用无人机进行摄影测量 Sebastián Cisneros、Érika García、Karen Montoya、Izar Sinde ……………………… 对漏洞进行形态分析
5. 此值适用于 2SIXT0112T2A0 的变压器。由于去饱和保护电路,测试电压不能施加到产品本身。 6. 原包装内的存储温度必须限制在给定值以内。否则,限制在 85° C。 7. 组件表面温度可能因实际工作条件而有很大变化,必须限制在给定值以内,以确保产品的长期可靠性。 8. 高于此水平的操作需要降额电压,以确保产品的长期可靠性。 9. 详情请参见图 3。 10. 每个生产样品的变压器均已在给定值下经过 1 秒的 100% 测试。 11. 每个变压器都进行了局部放电测量。 12. CTI ≥ 600 PCB 材料。 13. 请参阅 IGBT 模块的数据表。