抽象背景:对于许多脑部疾病,一部分患者共同表现出皮质脑结构和循环免疫标记水平升高的改变。这可以部分由共同的遗传结构驱动。因此,我们研究了将全球皮质表面积和厚度与血液免疫标记物联系起来的表型和遗传关联(即白细胞计数和血浆C反应蛋白水平)。方法:使用线性回归来评估30,823个英国生物库参与者的表型关联。全基因组和局部遗传相关性。使用混合器估算了共享特质侵蚀遗传变异的数量。使用共同的遗传结构使用连接性的假发现率框架评估,并将映射基因包括在基因组富集分析中。结果:皮质结构和血液免疫标记物主要表现为反表型相关。存在适中的全基因组遗传相关性,其中最强的是C反应蛋白水平(R G_SURFACE_AREA = 2 0.13,错误发现率 - 校正后的P = 4.17 3 10 2 3; R G_THICKNESS = 2 0.13,错误发现率 - 错误发现率 - 纠正的P = 4.00 3 10 2 2 2)。同时,局部遗传相关性显示出正相关和负相关的镶嵌物。白细胞平均分别分别具有表面积和厚度的遗传变异的特征侵蚀遗传变异的平均共享46.24%和38.64%。总体而言,单核细胞计数表现出与皮质大脑结构的最大遗传重叠。此外,表面积与血液免疫标记共享55个独特的基因座,而厚度共享15。一系列基因富集分析涉及神经元,星形胶质细胞和精神分裂症相关的基因。结论:发现表明皮质大脑结构和血液免疫标记的共有遗传基础,对神经发育和理解与大脑相关疾病的病因有影响。
阵列中每台激光器的热通量都会根据其内部间距对熔池的整体形状/尺寸产生影响,即基于叠加原理和每台激光器温度场之间的热串扰。通常,由于热量分布在更大的表面积上,随着内部间距的增加,宽度会增加,但深度则呈现相反的趋势,即热量渗透到粉末床中会减少。此外,熔池尺寸(深度和宽度)
本文报道了高表面积活化还原氧化石墨烯 (arGO) 的制备方法,该氧化石墨烯被氧化成富含缺陷的 GO (dGO) 的 3D 类似物。arGO 的表面氧化导致碳氧比 C/O = 3.3,类似于氧化石墨烯的氧化状态,同时保持约 880 m 2 g −1 的高 BET 表面积。表面氧化 arGO 的分析表明,氧官能团含量高,可将疏水前体转化为亲水材料。高表面积碳为氧化提供了整个表面,而无需插层和晶格膨胀。因此,表面氧化方法足以将材料转化为具有与氧化石墨烯相似化学性质的 3D 结构。“3D 氧化石墨烯”在极宽的 pH 区间内表现出对 U(VI) 去除的高吸附能力。值得注意的是,表面氧化的碳材料具有刚性的三维结构,微孔可供放射性核素离子穿透。因此,块状“3D GO”可直接用作吸附剂,而无需分散,这是 GO 使其表面积可供污染物进入的必要步骤。
11 最近,基于金属有机骨架 (MOF) 的聚合物基底在许多工程 12 和技术领域展现出良好的性能。然而,MOF/聚合物复合材料的一个常见缺点是 MOF 晶体封装和 13 表面积减小。这项工作报告了一种简便温和的生产自支撑 MOF 为主的中空 14 纤维垫的策略。通过 15 我们的合成方法成功制造了多种中空 MOF,包括 MIL-53(Al)-NH 2 、Al-PMOF 和 ZIF-8 16 。该合成策略结合了金属氧化物的原子层沉积 (ALD) 到聚合物纤维,16 随后选择性去除聚合物成分,然后将剩余的中空金属氧化物转化为 17 独立的 MOF 为主的中空纤维结构。中空 MOF 表现出增大的表面积、极好的孔隙率、优异的孔隙可达性,并在 CO 2 吸附(3.30 mmol g -1 )、CO 2 /N 2 分离选择性(15/85 和 50/50 CO 2 /N 2 混合物分别为 24.9 和 21.2)和催化去除 HCHO(60 分钟内完成 150 ppm 的氧化)方面表现出显着改善的性能。
图1牙周发炎表面积(PISA)改良和未改进的组的临床特征。(a)在29例2型糖尿病患者中显示PISA的直方图显示双峰分布,将患者分为PISA改良(<5.0 mm 2)和未改良(≥5.0mm 2)组。(b)PISA改良和未改进的组之间牙周指标变化的差异 * P <0.05,** P <0.01。(c)在PISA改良和未改进的组之间血糖控制治疗之前的临床指标值中可以观察到显着差异。* P <0.05。(d)可以观察到PISA的PISA变化与PISA改良组的全身指标之间的正相关性。abi,踝臂压力指数; ACAC,乙酸; BHB,β-羟基丁酸; BOP,探测出血; Cal,临床依恋水平; CPI,C肽指数; CVRR,R-R间隔变化系数; FPG,禁食等离子体葡萄糖; Imp,PISA改良的小组; NS,不重要; PLI,斑块指数; PISA/牙齿,牙周发炎的表面积/残留牙齿的数量; PPD,探测口袋深度; Unimp,PISA未经改进的组。
摘要Öz在这项研究中,细菌纤维素(BC)是从komagataeibacter xylinus s4获得的,并详细表征。确定了卑诗省生产的各种碳源和培养基,不同的pH条件,不同的pH条件,孵育温度,表面积/体积比和孵育持续时间。考虑到碳的类型,从高到低的BC生产量被实现为蔗糖,果糖,甘露醇,木糖,阿拉伯糖和乳糖。通过组合M1A05P5肉汤,30°C,1.06 cm -1表面积/体积比,pH 3.5和21天,可以实现最高的BC量(1.303 g/L)。根据扫描电子显微镜(SEM)分析,纤维素原纤维直径为pH 3.5时为34.87-45.97 nm,在M1A05P5中的pH 6.5时为29.71-102.3 nm。此外,TGA分析也表明,在去除50°C和150°C之间的水步骤中,BC的重量损失,以及在215°C和228°C之间初始化的降解步骤。最后,在27-137°C的温度尺度上确定BC样品的电导率值。观察到电导率取决于温度,并且随着温度的增加,电导率成倍增加。总而言之,K。xylinus S4的纤维素通常显示出半导体的行为。
研究了相变材料在带有波纹翅片的矩形外壳中的固液相变。采用基于物理的模型,探索了翅片长度、厚度和波幅对热场和流体流场的影响。将翅片纳入热能存储系统可增加传热表面积和热穿透深度,从而加速熔化过程。波纹翅片比直翅片产生更多的流动扰动,从而提高熔化性能。更长更厚的翅片可提高熔化速度、平均温度和热能存储容量。然而,翅片厚度对热特性的影响似乎微不足道。较大的翅片波幅会增加传热表面积,但会破坏自然对流,从而减慢熔化前沿的进程。开发了一种基于人工神经网络和粒子群优化的替代模型来优化翅片几何形状。与平面翅片相比,优化后的几何形状使每单位质量的热能存储提高了 43%。数据驱动模型预测的液体分数与基于物理的模型的差异小于 1%。所提出的方法提供了对系统行为的全面理解,并有助于热能存储系统的设计。
肿瘤组织无法满足这种过度需求,而这些血管往往形成不良且“渗漏”。由于纳米粒子与天然小分子和生长因子相比尺寸较大,它们很少穿过正常组织中正常形成的血管壁。然而,肿瘤中渗漏的血管系统允许纳米粒子穿过其壁,并导致纳米粒子在肿瘤内积聚。肿瘤还表现出不良的淋巴引流,这意味着通过渗漏血管进入肿瘤的纳米粒子从癌组织中带走的效率不如从正常组织中带走的效率高,从而增加了这种在肿瘤中的积累。纳米粒子在癌组织中的这种被动积累凸显了它们作为“魔法子弹”的能力。纳米粒子的第二个好处是它们的表面积与体积比大,这意味着一个纳米粒子可以携带大量有效载荷到达目标,从而提供了一种有吸引力的药物输送方法。这种大的表面积还允许将多个不同的有效载荷附着到一个纳米粒子上,4 从而允许它们共同递送到目标,这具有许多治疗益处。诊断工具也可以与有效载荷一起附着在纳米粒子上,以产生治疗效果,其中纳米粒子系统可用于
1部门电子和计算机技术,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。2部分析化学,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。3苏利亚州大学库利亚(Culiacan),80040,墨西哥的院士。4 cienciasfísico-Matemáticas,锡那罗亚大学,库里亚坦大学,80040,墨西哥。5 Inorangic化学和技术化学系,UNED,马德里28232,西班牙。 6部门 无机化学,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。 *通讯作者,alfonsos@ugr.es可用orcid列表:d.g. 0000-0002-7810-6345; Y.H. 0000-0002-1959-2187; F.J.R. 0000-0002-1582-9626; C.L.M. 0000-0002-6659-7781; I.B.P. 0000-0003-3997-9191; M.P.C. 0000-0001-8377-587X; D.P.M. 0000-0002-3294-8934,N.R。 0000-0002-6032-6921; A.S.C. 0000-0002-1360-6699。 摘要这项工作介绍了用于生物能力采集的激光诱导的石墨烯(LIG)电极的制造程序。 这项研究中提出的结果表明,与先前在文献中报道的其他基于LIG的电极获得的性能有关。 特别是,我们提出了使用电流测量激光器而不是CNC激光器来改善雕刻分辨率和LIG合成过程,从而增强了界面皮肤电极的表面积。 1。5 Inorangic化学和技术化学系,UNED,马德里28232,西班牙。6部门无机化学,科学学院,格拉纳达大学,格拉纳达大学,18071年,西班牙。*通讯作者,alfonsos@ugr.es可用orcid列表:d.g.0000-0002-7810-6345; Y.H.0000-0002-1959-2187; F.J.R.0000-0002-1582-9626; C.L.M.0000-0002-6659-7781; I.B.P.0000-0003-3997-9191; M.P.C.0000-0001-8377-587X; D.P.M.0000-0002-3294-8934,N.R。0000-0002-6032-6921; A.S.C.0000-0002-1360-6699。摘要这项工作介绍了用于生物能力采集的激光诱导的石墨烯(LIG)电极的制造程序。这项研究中提出的结果表明,与先前在文献中报道的其他基于LIG的电极获得的性能有关。特别是,我们提出了使用电流测量激光器而不是CNC激光器来改善雕刻分辨率和LIG合成过程,从而增强了界面皮肤电极的表面积。1。为此,我们研究了所得的LIG模式的电阻,这是寻求优化的激光参数(雕刻功率和扫描速度)的函数。调整激光制造过程后,我们使用商用的基于银基电极作为参考,使用不同表面积进行了制造和表征与不同表面积的电极。因此,使用直径为15毫米,10毫米和6.5毫米的圆形电极用于使用商业设备在不同志愿者上获取ECG。随后使用尖端处理技术处理所采集的信号,以对检测QRS复合物检测的灵敏度,特异性,积极预测和准确性进行统计分析。结果表明,在噪声方面,提出的电极相对于先前报道的基于LIG的电极改善了信号的采集,并且确实比商业电极(即使是较小的表面积)提出了可比较甚至更好的结果,并且不需要使用电解质凝胶,具有附加优势。关键字:激光诱导的石墨烯,心电图,柔性电子,生物信号,电极,激光制造。引言心血管疾病(CVD)是全球死亡的主要原因[1]。根据世界卫生组织(WHO)的报告,2019年与CVD有关的死亡人数为1790万,占全球死亡人数的32%。此外,据估计,到2030年,CVD死亡人数每年将增加到2360万[2]。这些设备有望在因此,已经致力于早期诊断,预防和治疗这些疾病。心电图(ECG)在这种情况下起着至关重要的作用,因为它可以通过非侵入性监测心脏的电活动来早期检测CVD。传统上,获得ECG需要医院就诊并使用复杂的监测系统。但是,可穿戴健康监测系统(WHM)的出现彻底改变了这一领域[3]。