引言:钛合金,包括Ti-6Al-4V,具有良好的机械和化学性能,如高抗拉强度和韧性、优异的抗腐蚀和氧化性能、重量轻、耐极端温度、高强度重量比。因此,它们越来越多地应用于航空航天、航天器、汽车、生物医学、化工和石化、海上石油和天然气、海水淡化和发电行业[1-8]。为了克服在使用传统加工技术加工钛合金等超级合金时遇到的困难,工程车间采用了非常规技术。这些技术包括电火花加工 (EDM)、超声波加工 (USM)、磨料水射流加工 (AWJM) 和激光加工 (LM) [5, 9-10]。激光切割是一种使用激光切割材料的热切割工艺,通常用于工业制造应用。这是通过将高功率、相干、单色激光束(波长范围从紫外到红外)聚焦到工件表面来实现的。激光束的能量被工件吸收,导致聚焦点处材料的温度迅速升高。温度如此之高,以至于根据材料的特性和光束的强度,材料会熔化或蒸发,并可能发生化学转变,然后使用高压辅助气体去除[11- 19]。材料和机械部件的表面粗糙度在确定其加工性能方面起着重要作用
摘要。吹snow升华是极地区域的关键边界层过程,是南极冰盖表面质量平衡(SMB)中的主要消融项。这项研究更新了区域性气候气候模型(RACMO),版本2.3p3中的吹声模型,将爆炸的爆发升华为温度和水蒸气的预后方程。这些更新是通过更新以前的模型版本中的数字伪像,它可以替换均匀离散的冰颗粒半径差距,从而将最大冰粒半径限制在≤50µm上,而不均匀的分布覆盖半径为2至300 µm,而无需其他计算额外的计算盖帽。改进的模型对来自南极洲阿德利(Adélie)土地的地点D47的气象观察进行了验证。更新符合数值伪像,成功地预测了以风速的吹吹孔中的幂律变化,同时改善了其亮度的预测。此外,与Calipso(Cloud-aerosol Lidar和红外路径固定卫星观察者)进行了定性比较,卫星数据表明,Racmo准确地预言了每月吹吹频率的空间模式。该模型还产生了D47时的平均吹声层深度为230±116 m,与典型的卫星观测值相匹配。结果表明,在不吹雪的情况下,南极洲主要发生在夏季(10月至3月),冬季(4月至9月)的表面升华最少。引入吹声模型会产生一种主要在冬季造成的额外升华机制。从2000 - 2012年开始,模型集成的吹式升华平均为175±7 gt yr-1,比以前的版本增加了52%。总升华,总和吹雪和表面升华,达到234±10 gtyr-1,
更好。视场透镜和聚光透镜在中心区域的表面质量应为 20-5,在外区的表面质量应为 40-15。目镜的中心透镜在中心区域的表面质量应为 40-15,在外区的表面质量应为 40-20。除对称目镜中的目镜外,目镜在中心区域的表面质量应为 40-20,在外区的表面质量应为 60-30。当视场透镜和目镜相同时,两者的表面质量在中心区域应为 20-5,在外区的表面质量应为 40-15。位于目镜和出瞳之间的滤光片在中心区域的表面质量应为 40-20,在外区的表面质量应为 60-30。位于内部的滤光片应具有与 3.7.10.1 中对棱镜规定的相同要求。位于物镜前方的滤光片的表面质量应为 80-50 或更高。
摘要目前的工作描述了在没有涂层的情况下(LSPWC)对选择性激光熔化制造的中等尺寸(外直径≤10mm)螺旋齿轮的影响。使用200 MJ的能量进行了五次实验,最高为1 J,而点尺寸和重叠分别保持为1 mm和90%。的响应,并根据表面残留应力,表面粗糙度和LSPWC处理样品的微观结构进行比较。结果表明,在LSPWC处理后的螺旋齿轮的根部发展了显着的压缩残留应力,在那里它将状态从拉伸+45 MPa更改为压缩-421 MPa。表面粗糙度已显示出改善,而体积材料的峰值将降低降低了50%以上。微观结构研究是在表面和横截面上使用扫描电子显微镜和电子反向散射分析分析进行的。观察到谷物的修补和不良方向的变化,并确定塑性变形。
Xavier Fettweis 1,Stefan Court 1.2,UTA Crebs-Kanzow 3,Charles Amory 1,Truo Ork,Truo Ork,Constantine J. Construction 6 Fujita 10,Paul Gierz 3,Heiko Greelzer 6.11.12,Edward Hanna 13,Akihiro Hashimoto Hashimoto 5,philip Huybright 15 Chorlots借出了LTEL 1,CORLOTS LANG 1,CORLOTS LANG。长期17.18,Jan T. M. Lenaerts 19,Glen E. Liston 20,Gerrit Lohmann 3,Sebastian H. Mernild 21.24.25,您Mikaliawicz 15,Kameswarra Modali 26,Ruth H. ,Jan Streffund 3,Broke 6的Willem,Broke 6的Michale 6,Wal 6.30的Rodeer S. W.
更好。场镜和聚光镜中央区域的表面质量应为 20-5,外区的表面质量应为 40-15。目镜的中心透镜中央区域的表面质量应为 40-15,外区的表面质量应为 40-20。除对称目镜中的目镜外,目镜中央区域的表面质量应为 40-20,外区的表面质量应为 60-30。当场镜和目镜相同时,两者的表面质量应为中央区域 20-5,外区 40-15。位于目镜和出瞳之间的滤光片中央区域的表面质量应为 40-20,外区的表面质量应为 60-30。位于内部的滤光片应具有与 3.7.10.1 中对棱镜相同的要求。位于物镜前方的滤光片的表面质量应为 80-50 或更好。
Staron®和Tempest®产品有70多种不同的颜色。每种颜色都可以由Staron®认证的处理器/安装程序提供不同的表面质量。深色工作表面或特别是具有高光泽的深色可能具有刮擦和肥皂残留的迹象,而不是浅色的表面材料。这就是为什么高gloss表面需要额外的维护和护理,以便保留原始的光泽。根据表面质量和颜色,需要不同的清洁技术来清除顽固的污渍和少量划痕。阅读以下说明(注意:如果您不确定Staron®实心表面具有哪种表面质量,请联系您的认证处理器/安装程序)。不要试图修复深划痕,剥落或消防污渍。与认证的Staron®处理器/安装程序联系。
1 西安大学陕西省表面工程与再制造重点实验室,西安 710065 2 西安大学西安植入器械原型与优化重点实验室,西安 710065 3 西安交通大学材料力学行为国家重点实验室,西安 710049 * 电子邮件;liumingxia1121@163.com 收稿日期:2022 年 1 月 6 日/接受日期:2022 年 2 月 22 日/发表日期:2022 年 4 月 5 日 采用超高速激光熔覆-随后的激光重熔(EHLA-LR)在 2Cr13 钢基体上制备镍基涂层。详细研究了激光重熔(LR)处理对超高速激光熔覆(EHLA)涂层的形貌、微观组织、残余应力和耐腐蚀性能的影响。结果表明:EHLA-LR一体化工艺可使涂层表面粗糙度降低86%、表面致密性提高、表面平整度得到优化。EHLA-LR涂层近表面枝晶间距减小,晶粒细化,经LR处理后涂层物相变化不大。结果表明:涂层残余压应力基本保持不变,但经LR处理后残余压应力略有降低。此外,由于LR工艺提高了涂层表面致密性、细化了晶粒,EHLA-LR涂层的耐腐蚀性能优于EHLA涂层。关键词:超高速激光熔覆;激光重熔;微观组织;晶粒细化;残余应力;耐腐蚀性能
局部可解释和模型无关解释 (LIME) 是一种可解释的人工智能 (XAI) 方法,用于识别智能磨削过程中预测平均表面粗糙度 (Ra) 的全局重要时频带。智能磨削装置包括一台 Supertech CNC 精密表面磨床,配备一个 Dytran 压电加速度计,沿切线方向 (Y 轴) 安装在尾座主轴上。每次磨削时,都会捕获振动特征,并使用 Mahr Marsurf M300C 便携式表面粗糙度轮廓仪记录地面真实表面粗糙度值。在整个实验中,粗糙度值范围为 0.06 至 0.14 微米。提取磨削过程中收集的每个振动信号的时间频域频谱图帧。建模卷积神经网络 (CNN) 以基于这些频谱图帧及其图像增强来预测表面粗糙度。最佳 CNN 模型能够预测粗糙度值,总体 R2 分数为 0.95,训练 R2 分数为 0.99,测试 R2 分数为 0.81,仅使用 80 组振动信号(对应 4 次实验,每次 20 次试验)。虽然数据量不足以保证在现实场景中达到这样的性能指标,但可以提取这些复杂的深度学习模型捕获的关系背后的统计一致的解释。在开发的表面粗糙度 CNN 模型上实施了 LIME 方法,以识别影响预测的重要时频带(即频谱图的超像素)。基于在频谱图帧上确定的重要区域,确定了影响表面粗糙度预测的相应频率特性。基于 LIME 结果的重要频率范围约为 11.7 至 19.1 kHz。通过基于重要频率范围并考虑奈奎斯特标准将采样率从 160 kHz 降低到 30、20、10 和 5 kHz,证明了 XAI 的强大功能。通过仅提取低于其相应奈奎斯特截止值的时间频率内容,为这些范围开发了单独的 CNN 模型。通过比较模型性能提出了一种适当的数据采集策略,以论证选择足够的采样率来成功且稳健地捕捉磨削过程。© 2023 制造工程师协会 (SME)。由 Elsevier Ltd. 出版。保留所有权利。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)由 NAMRI/SME 科学委员会负责同行评审。关键词:卷积神经网络;可解释机器学习;XML;可解释人工智能;XAI;局部可解释和模型无关解释;LIME;表面粗糙度;表面磨削;光谱图