近年来,基于电路量子电动力学(cQED)的量子计算取得了进展。我们可以利用谐振器实现量子非破坏性测量,或者通过珀塞尔效应控制量子比特的衰减[1-4]。然而,由于光刻可扩展性,超导量子比特的数量不断增加,可能会达到有噪声的中型量子计算[5],芯片尺寸等限制使量子网络难以扩展。除了cQED,一个有希望扩大电路规模的候选者是波导QED,它有助于在远距离组件之间交换信息。我们可以在波导介导的相互作用系统中观察到一些光学现象,如电磁诱导透明(EIT)和法诺共振[6-10]。这些干涉效应取决于量子比特的频率失谐和位置,为量子存储和量子信息的应用带来希望。我们可以进一步将量子比特置于特定的分离中,实现原子级镜像或空间纠缠的流动光子[11,12]。然而,开放环境中的衰减损失限制了波导介导的门保真度。作为一种潜在的解决方案,一些基于“巨原子”的理论和实验引起了人们的关注[13-21]。在这里,量子比特与波导有多个连接点,并通过干涉效应防止退相干。这种设计也可以扩展到
摘要本文重点介绍了带通(BP)负数组延迟(NGD)功能的时间域分析。创新的NGD调查基于“ lill” - 形状被动微带电路的创新拓扑的时域实验。描述了特定微带形状构成的概念证明(POC)的设计原理。NGD电路的灵感来自最近分布的“ Li” - 拓扑。在时间域调查之前,研究了所研究电路的BP NGD规格是学术上定义的。作为基本定义的实际应用,本文的第一部分介绍了“ lill” - 电路的频域验证。POC电路是由2.31 GHz NGD中心频率和27 MHz NGD带宽的-8 NS NGD值指定的。“ Lill” - 电路的衰减损失约为-6。在NGD中心频率下 2 dB。 然后,用测得的S-参数的Touchstone数据代表的“ Lill”的两端子黑框模型被用于瞬态模拟。 测得的组延迟(GD)说明了测试的“ lill” - 电路在NGD方面作为BP函数,NGD等于-8。 在NGD中心频率处为1 ns。 使用高斯脉冲调节正弦载波进行BP NGD函数的时间域演示。 可以解释具有同时绘制良好同步输入和输出信号的创新实验设置。 可以观察到,正弦载波不超出NGD波段时,输出信号会延迟。2 dB。然后,用测得的S-参数的Touchstone数据代表的“ Lill”的两端子黑框模型被用于瞬态模拟。测得的组延迟(GD)说明了测试的“ lill” - 电路在NGD方面作为BP函数,NGD等于-8。在NGD中心频率处为1 ns。使用高斯脉冲调节正弦载波进行BP NGD函数的时间域演示。可以解释具有同时绘制良好同步输入和输出信号的创新实验设置。可以观察到,正弦载波不超出NGD波段时,输出信号会延迟。通过使用具有27 MHz频率带宽的高斯向上转换的脉冲,使用测量的“ Lill”电路的Touchstone S-参数从商业工具模拟中理解了BP NGD时间域响应。但是,当将载体调谐为大约等于2.31 GHz NGD中心频率时,输出信号包络线在大约-8 ns中。确认BP NGD响应的时间域典型行为,在测试期间考虑了具有高斯波形的输入脉冲信号。但是,必须在NGD带宽的功能中确定输入信号频谱。在测试后,与输入相比,测量的输出信号信封显示前缘,后边缘和时间效率的峰值。当前可行性研究的结果开放了BP NGD功能的潜在微波通信应用,特别是对于使用ISM和IEEE 802.11标准运行的系统。