除非另有说明,否则本演示文稿的再利用将由CC乘4.0许可证授权。对于欧盟不拥有的要素的任何用途或复制,可能需要直接从各个权利持有人那里寻求许可。
摘要 目的 2018年12月,中国启动国家带量采购(NVBP),与药品生产企业进行药品价格谈判。吉非替尼是25种试点药物之一,用于治疗非小细胞肺癌。肺癌是中国最常见的癌症类型,像吉非替尼这样的靶向药物已被证明可以为患者带来临床益处。本研究旨在探讨NVBP政策对抗癌药物使用和支出的影响。方法 以吉非替尼和替代药物(埃克替尼和厄洛替尼)为研究对象。使用中国医院药品审计数据库的9454家医院的季度数据进行分析。以采购量和支出为变量进行描述性分析。采用间断时间序列(ITS)分析进一步分析NVBP政策对研究药品的影响。结果 NVBP政策实施前(2018Q2—2019Q1)与实施后(2019Q2—2020Q1)的12个月期间,药品总采购量从448万DDD上升至702万DDD,增幅为56.66%,吉非替尼和替代药品的采购量分别增长了100.61%和14.88%。NVBP政策实施后,替代药品采购量减少了72 051 DDD(P值=0.044),趋势变化量减少了56 738 DDD(P值<0.01)。总体费用减少14.7%,其中吉非替尼费用减少38.47%,替代药品费用增加10.70%。ITS分析显示,总药品和吉非替尼费用的水平和趋势变化差异均具有统计学意义。结论 本研究提供的证据表明,NVBP政策的实施与第一代抗EGFR肺癌药物费用的减少有关。该政策有效地控制了第一代抗EGFR肺癌药物费用的增长。
Pfizer-Biontech Covid-19疫苗,优先使用低死量注射器和/或针。•每个剂量必须含有0.3 mL的疫苗。•如果在小瓶中剩余的疫苗量不能提供0.3毫升的全剂量,请丢弃小瓶和任何多余的体积。•稀释后6小时立即进行管理。•低死量注射器和/或针可用于从单个小瓶中提取6剂。以确保一致
儿童的成熟生理反映在更复杂的给药方案中,以在儿科一生中达到目标暴露[1]。对于多种药物,如果满足以下要求,治疗药物监测(TDM)可能支持药物治疗的优化:(1)治疗范围较窄,(2)变异性大,(3)已知的浓度-效应关系,(4)没有可测量的效果。模型信息精准给药(MIPD)是TDM的下一步,最近受到了更多的关注,因为它可以作为帮助个体化给药的有力工具[2]。特别是,儿科药物治疗可能会受益于这种临床决策支持(CDS)的发展,并超越复杂的给药方案,实现更加个性化的给药。在本期期刊中,Hartman 等人[ 3 ] 评估根据基于模型的剂量指南对危重新生儿和儿童给药的万古霉素、庆大霉素和妥布霉素在 TDM 期间的目标达成情况。尽管如此,作者仍然观察到这三种药物的亚治疗浓度和超治疗浓度的比例很大。我们非常感谢他们在实施更简化的剂量指南后评估目标达成情况的主动性
摘要表明,与Lebiedow-Icz等人的主张相反。(Phys Rev D 105(1):014022,2022)在适当的物理变量中配制的较低定理(Phys Rev 110(4):974–977,1958)用于软光子发射不需要任何模拟。我们还拒绝Lebiedowicz等人的批评。(2022)论文(Phys。Burnett和Kroll。修订版Lett。 20:86–88,1968; Nucl Phys B 307:705–720,1988年的Lipatov。 同时,我们确定了Burnett and Kroll(1968)中的一些不准确性,以呈现软孔定理的旋转一半属性。 我们还指出了经典教科书中低定理的缺点(Berestetskii等人 量子电动力学。 Pergamon Press,牛津,1982年; Lifshitz和Pitaevsky在相对论量子理论中,第2部分,Fizmatlit,2002)。Lett。20:86–88,1968; Nucl Phys B 307:705–720,1988年的Lipatov。同时,我们确定了Burnett and Kroll(1968)中的一些不准确性,以呈现软孔定理的旋转一半属性。我们还指出了经典教科书中低定理的缺点(Berestetskii等人量子电动力学。Pergamon Press,牛津,1982年; Lifshitz和Pitaevsky在相对论量子理论中,第2部分,Fizmatlit,2002)。
更高的能量“容易” - 3个TEV研究(CLIC),但许多TEV具有挑战性:•功率与亮度成比例•考虑到50km•较高能量意味着较小的光束和越来越重要的横梁效应
(开发编号2001)2020年1月22日三菱电机株式会社实现高能源效率的污水处理:开发基于AI的污水处理厂曝气量控制技术三菱电机株式会社开发了一种曝气量控制技术,该技术利用其AI技术Maisart®*1,通过提前数小时准确预测进入进行污水处理所需氧化过程的生物反应器的水质(氨浓度),来抑制生物反应器的过度曝气(空气供应)。通过控制每个部分,可以在保持处理水质的同时,与传统方法相比减少约 10%*2 的曝气量。这将有助于减少污水处理厂的电力消耗,目前污水处理厂每年消耗约 70 亿千瓦时*3 的电力,相当于全国电力消耗的约 0.7%。
简介。— 生成非经典玻色子态 [1 – 3],例如压缩光、福克态和薛定谔猫态,不仅对量子力学的基础研究很重要,而且对量子技术的应用也很重要 [2,4 – 6]。例如,相空间中具有离散平移或旋转对称性的玻色子态 [7 – 14] 已被提议用于编码量子信息 [15 – 20],为硬件高效的量子纠错铺平了道路 [21 – 24]。可以通过例如交错的选择性数字相关任意相位 (SNAP) 和位移门 [25 – 27] 来制备和稳定玻色子代码态以防止耗散。最近的一系列研究 [28 – 31] 指出了一种基于汉密尔顿工程的替代被动控制方法,该方法可用于促进容错操作,例如通过抑制相位翻转错误 [28]、动态抑制与环境的耦合 [30] 以及加速代码字的状态准备 [31] 。汉密尔顿工程的另一个感兴趣领域是拓扑。由于相空间的非交换性质,在封闭的相空间环上移动的量子粒子获得类似于磁场中粒子的 Aharonov-Bohm 相的几何相。因此,相空间中的带隙格子汉密尔顿可以支持非平凡的陈数 [16,32 – 40] 。这是一个很有吸引力的特性,因为在具有物理边界的系统中,它将导致拓扑稳健的边缘传输。虽然已经展示了如何生成