米内罗三角联邦大学(UFTM)校长由共和国总统根据 2023 年 6 月 1 日法令任命,该法令于次日在联邦官方公报上公布,行使她的法律和监管权力,并考虑到法律号 8,112/1990、法律号 12,772/2012、部际条例号 316/2017(于 2017 年 10 月 19 日公布在 DOU 上)、MGI/MEC 联合条例号 29/2023(于 2023 年 7 月 28 日公布在 DOU 上)、开幕通知号 01/2024(于 2024 年 1 月 3 日公布在 DOU 上)、认证通知号 23/2024(于 2024 年 4 月 26 日公布在 DOU 上)以及根据乌贝拉巴第一联邦法院正在审理的程序号 6007634-39.2024.4.06.3802 中作出的裁决:艺术。 1º 有效任命下列候选人,其通过公开考试和职称竞争,根据第 12,772/2012 号法律,担任高等教育教授(A 类、1 级)职位,每周工作 40 小时,专心致志。
具有连续体束缚态的硅槽形纳米立方体高效二次谐波产生 方慈哲,杨奇宇,袁清晨,顾林鹏,甘雪涛*,邵瑶,刘燕,*韩根泉,郝越 方聪,杨倩,刘英教授,韩刚教授,郝英教授 西安电子科技大学微电子学院宽禁带半导体技术国家重点实验室,西安 710071,中国 电子邮件:xdliuyan@xidian.edu.cn 袁倩,顾琳,甘雪教授 西北工业大学物理科学与技术学院,工业和信息化部光场操控与信息获取重点实验室,陕西省光信息技术重点实验室,西安 710129,中国 电子邮件:xuetaogan@nwpu.edu.cn Y.邵 国家电网上海能源互联网研究院,上海市浦东新区李冰路251号,201210,中国 刘宇 教授 智能芯片与器件研究中心 浙江省重点实验室,杭州,311121,中国 关键词:二次谐波产生,连续体中的束缚态,硅,介电纳米结构 具有中心对称性的光学材料,例如硅和锗,不幸的是
a 双威电化学能源与可持续技术中心 (SCEEST),双威大学工程与技术学院,No. 5, Jalan Universiti, Bandar Sunway, 47500 Selangor Darul Ehsan,马来西亚 b 马来西亚理工大学理学院化学系,81310 Johor Bahru,Johor,马来西亚 c 农业大学物理系,Faisalabad,Punjab 38000,巴基斯坦 d 创新与技术学院,工程学院,化学工程项目,No.1 Jalan Taylor's,马来西亚泰莱大学,47500 Subang Jaya,雪兰莪,马来西亚 e Chitkara 大学 Chitkara 研究与开发中心,Himachal Pradesh 174103,印度 f 德里大学 Bhagini Nivedita 学院物理系与研究中心,Delhi 110043,印度 g 格拉斯哥大学詹姆斯瓦特工程学院,格拉斯哥,G12 8QQ 英国 h 昌迪加尔大学研究与发展中心,莫哈里,旁遮普,140413,印度 i 西安电子科技大学先进材料与纳米技术学院,陕西省西安 710126,中国
1 西安科技大学机电工程学院,西安 710054,中国 2 上海交通大学材料科学与工程学院金属基复合材料国家重点实验室,上海市东川路 800 号,200240,中国 3 上海交通大学国家转化医学基地,上海 200240,中国 4 上海电力学院数理学院、能源与机电工程学院,上海 201306,中国 5 右江民族医学院附属医院,百色 533000,中国 6 埃迪斯科文大学工程学院先进材料与制造中心,270 Joondalup Drive, Joondalup, Perth, 6027 WA,澳大利亚
1 西安交通大学微电子学院和材料力学行为国家重点实验室,西安 710049,中国 2 沈阳材料科学国家实验室,中国科学院金属研究所,沈阳市文化路 72 号,110016,中国 3 西安交通大学材料科学与工程学院材料力学行为国家重点实验室,西安 710049,中国 4 西安交通大学电子与信息工程学院电子材料研究实验室,西安 710049,中国 5 Ernst Ruska 电子显微镜和光谱中心,Jᅵlich 研究中心,D-52425 Jᅵlich,德国 6 阿肯色大学物理系和纳米科学与工程研究所,阿肯色州费耶特维尔 72701,美国(日期:2020 年 2 月 9 日)
北京交通大学(中国) 香港理工大学(中国) 纽约州立大学布法罗分校(美国) 西北大学(美国) 复旦大学(中国) 加州大学戴维斯分校(美国)和香港中文大学(深圳)(中国) 北京大学(中国) 南京大学(中国) 华中科技大学(中国) 华盛顿大学(美国) 不列颠哥伦比亚大学(加拿大) 中佛罗里达大学(美国) 中国科学技术大学(中国) 中兴通讯股份有限公司(中国) 中兴通讯股份有限公司(中国) 北京理工大学(中国) 中兴通讯股份有限公司(中国) 中国科学院微电子研究所(中国) 法政大学(日本) 西南交通大学(中国) 清华大学(中国) 佐治亚州立大学(美国) 德岛大学(日本) 浙江大学(中国) 西安电子科技大学(中国) 佐治亚大学(美国) 三菱电机研究实验室(美国) 萨里大学(英国) 上海交通大学(中国) 东南大学(中国) 中兴通讯股份有限公司(中国) 哥伦比亚大学(美国) 中兴通讯股份有限公司(中国) 南京邮电大学(中国) 爱荷华州立大学(美国) 澳门大学(中国) 中兴通讯股份有限公司(中国) 埃塞克斯大学(英国) 新南威尔士大学(澳大利亚) 微软亚洲研究院(中国) 悉尼科技大学(澳大利亚) 浙江大学(中国) 北京邮电大学(中国) 南洋理工大学(新加坡) 悉尼科技大学(澳大利亚) 滑铁卢大学(加拿大)
裴毅于2004年获得北京大学电子工程学士学位,2005年和2009年分别获得美国圣巴巴拉大学电子工程硕士和博士学位。他目前是技术副总裁,负责GaN产品设计、前沿GaN技术开发和知识产权战略。他是西交利物浦大学、北京大学和苏州大学的客座教授。他也是IEEE/CIE的高级会员和电源协会的TPC成员。他的研究兴趣包括微波和毫米波GaN电子设计和建模、GaN电力电子设计和应用以及Ⅲ-N半导体加工技术开发。他是100多篇期刊和会议论文的作者或合著者。他还拥有150多项授权专利和专利申请。
沟通能力 • 通过作为研究团队成员的经验获得良好的沟通能力(附件 2) • 与法国、突尼斯、南非等研究所的外国研究人员合作 • 协助外国交流研究人员的工作
项目简介:甲真菌病治疗困难,是皮肤科的难点和热点之一。透皮渗透困难是限制甲真菌病局部药物治疗的重要瓶颈,往往导致选择生物利用度低、副作用大、易引起耐药性的全身给药方式。由于前期对甲真菌病局部用药的探索较高,证实了经甲沟局部给药是可行的。可溶性微针作为一种微创、无痛的方法,可以突破表皮屏障,使药物进入甲沟。为了达到局部治疗效果的最大化,仍需解决药物在甲沟内的滞留和缓释,以达到持续抗菌的目的。本项目将纳米凝胶缓控释技术与可溶性微针相结合,实现抗真菌药物经皮透皮给药和药物在指甲基质中的滞留控制释放的目的。具体而言,本项目将设计透明质酸微针与载特比萘芬的纳米凝胶组合,采用两步浇铸法制备透皮给药系统,通过体外药敏试验确定其抗菌活性,并将特比萘芬透明质酸微针施用至甲真菌病患者的甲部,验证其临床效果及安全性。