第 10 届国际土工合成材料大会 (10ICG) 即将在德国柏林召开,它将成为土工合成材料行业技术成就的一次盛大庆典。10ICG 还将作为我们协会大部分业务的框架,包括引入新的 IGS 官员和理事会成员。从个人角度来看,10ICG 将标志着我作为你们主席的职责的完成,我很荣幸在过去四年中履行了这一职责。我借此机会重新审视 IGS 理事会在 2010 年于巴西瓜鲁雅举行的第 9 届国际土工合成材料大会 (9ICG) 会议上提出的战略目标和可衡量的成果,当时我开始担任你们的主席。列出战略目标和可衡量的成果也许很好,但如何报告过去四年的实际成果和成就呢?嗯,计划是在 2014 年 9 月 24 日于柏林举行的 IGS 大会上报告这些成果。此时,我让您推测,在 IGS 理事会、其分会和运营单位四年的紧张工作之后,下面列出的六个具体可衡量成果中的哪一个(如果有的话)是真正实现的。IGS 理事会在 2010 年瓜鲁雅会议上制定了一项长期计划,以组织和优先考虑其接下来四年的工作。该计划包括确定 IGS 的核心目标。也就是说,我们想阐明 IGS 存在或存在的真正原因。经过这次丰富的讨论,我们得出结论:
同步加速器辐射(SR)提供了广泛的明亮光,可以量身定制以测试无数的研究问题。sr提供了跨尺度阐明结构和组成的途径,使其非常适合研究植物和种子。在这里,我们介绍了一系列方法论和在光源设施上可用的数据输出。数据集具有来自包括Citrullus sp的各种作物物种的种子和谷物。(西瓜),木制sp。(菜籽),Pisum sativum(Pea)和Triticum durum(小麦),以展示SR在推进植物科学方面的力量。SR微型计算层析成像(SR-µCT)成像的应用显示了内部种子微观结构及其三维形态,而无需破坏性切片。光谱探测了样品生物化学,详细介绍了种子大量营养素的空间分布,例如胚胎,胚乳和种子涂层中脂质,蛋白质和碳水化合物。使用同步加速器X射线的方法,包括X射线吸收光谱(XAS)和X射线荧光(XRF)成像显示元素分布,以在种子子组门中的空间图中绘制微量营养素并确定它们的物种。同步基谱镜(SM)允许在纳米级水平上解析化学成分。各种农作物种子数据集展示了加拿大光源五个梁线提供的结构和化学见解的范围,以及用于告知植物和农业研究的同步成像的潜力。
第 10 届国际土工合成材料大会 (10ICG) 即将在德国柏林召开,它将成为土工合成材料行业技术成就的一次盛大庆典。10ICG 还将成为我们协会大部分业务的框架,包括新任 IGS 官员和理事会成员的就职。从个人角度而言,10ICG 将标志着我作为你们主席一职的完成,我很荣幸在过去四年中履行了这一职责。我借此机会重新回顾 IGS 理事会在 2010 年制定的战略目标和可衡量的成果,当时,我在巴西瓜鲁雅举行的第 9 届国际土工合成材料大会 (9ICG) 上举行会议,开始担任你们的主席。列出战略目标和可衡量的成果也许很好,但如何报告过去四年的实际成果和成就呢?嗯,计划是在 2014 年 9 月 24 日于柏林举行的 IGS 大会上报告这些成果。现在,我让你推测一下,经过 IGS 理事会、其分会和运营单位四年的紧张工作,下面列出的六个具体可衡量成果中的哪些(如果有的话)真正实现了。IGS 理事会在 2010 年于瓜鲁雅举行的会议上制定了一项长期计划,以组织和确定其未来四年的工作重点。该计划包括确定 IGS 的核心目标。也就是说,我们想要阐明 IGS 存在或存在的真正原因。作为这次丰富讨论的结果,我们得出结论:
第 10 届国际土工合成材料大会 (10ICG) 即将在德国柏林召开,它将成为土工合成材料行业技术成就的一次盛大庆典。10ICG 还将作为我们协会大部分业务的框架,包括引入新的 IGS 官员和理事会成员。从个人角度来看,10ICG 将标志着我作为你们主席的职责的完成,我很荣幸在过去四年中履行了这一职责。我借此机会重新审视 IGS 理事会在 2010 年于巴西瓜鲁雅举行的第 9 届国际土工合成材料大会 (9ICG) 会议上提出的战略目标和可衡量的成果,当时我开始担任你们的主席。列出战略目标和可衡量的成果也许很好,但如何报告过去四年的实际成果和成就呢?嗯,计划是在 2014 年 9 月 24 日于柏林举行的 IGS 大会上报告这些成果。此时,我让您推测,在 IGS 理事会、其分会和运营单位四年的紧张工作之后,下面列出的六个具体可衡量成果中的哪一个(如果有的话)是真正实现的。IGS 理事会在 2010 年瓜鲁雅会议上制定了一项长期计划,以组织和优先考虑其接下来四年的工作。该计划包括确定 IGS 的核心目标。也就是说,我们想阐明 IGS 存在或存在的真正原因。经过这次丰富的讨论,我们得出结论:
摘要 帽结合蛋白 eIF4E 通过与 eIF4G 相互作用构成 eIF4F 复合物的核心,该复合物在 mRNA 的环化及其随后的帽依赖性翻译中起关键作用。除了在 mRNA 翻译起始中的基本作用外,还描述或提出了 eIF4E 的其他功能,包括充当前病毒因子和参与性发育。我们使用 CRISPR/Cas9 基因组编辑生成了甜瓜 eif4e 敲除突变株系。编辑在甜瓜中有效,因为我们在 T0 代就获得了第一个 eIF4E 外显子中单核苷酸纯合缺失的转化植物。分离 F2 代的编辑和非转基因植物接种了摩洛哥西瓜花叶病毒 (MWMV);纯合突变植物表现出病毒抗性,而杂合和非突变植物被感染,这与我们之前对 eIF4E 沉默植物的结果一致。有趣的是,T0 和 F2 代的所有纯合编辑植物都表现出雄性不育表型,而与野生型植物杂交则恢复了育性,表明雄性不育表型的分离与 eif4e 突变的分离之间存在完美的相关性。对甜瓜雄花沿连续发育阶段的形态学比较分析表明,小孢子母细胞和绒毡层在减数分裂后发育异常,突变体和野生型的绒毡层降解时间明显不同。RNA-Seq 分析确定了花粉发育中的关键基因,这些基因在 eif4e/eif4e 植物的花中下调,并表明 eIF4E 特异性 mRNA 翻译起始是甜瓜雄配子形成的限制因素。
近年来,植物基因组学取得了重大进展,研究人员能够识别负责植物生长、发育和逆境反应的基因和基因组区域。2019 年植物基因组学特刊汇集了 57 篇论文,深入探讨了植物基因组学的各个方面,包括基因发现、数量性状位点(QTL)鉴定、基因组预测、基因组编辑、植物叶绿体基因组测序和比较分析、microRNA 分析和比较基因组学。这些研究广泛采用结合生物信息学和转录组分析的综合研究方法来识别响应各种生物和非生物逆境的基因 [ 1 , 2 ]。该方法包括(1)从参考基因组及其注释中全基因组识别所研究的基因家族,对已识别基因进行生物信息学分析,如染色体分布、基因结构、相似性和重复、保守结构域和基序分析以及系统发育分析; (2) 使用来自 Illumina RNA-Seq 测序和/或实时 PCR 分析的转录组数据,对不同胁迫处理下不同发育阶段的不同组织进行表达谱分析,并研究响应研究性状的基因沉默。使用这种方法,在 22 篇论文中,研究了已报道的各种基因家族,以识别响应非生物胁迫、果实成熟、种子发育、种子产量和花粉发育的基因,涉及 12 多个物种,例如番茄、小麦、桉树、烟草、葡萄、拟南芥、番茄、木薯、芜菁、陆地棉、谷子和西瓜。这些基因家族包括2-氧代戊二酸依赖性双加氧酶(2OGD)、细胞分裂素氧化酶/脱氢酶(CKX)、钙依赖性蛋白激酶(CPK)、核转运蛋白β、VQ、水通道蛋白、赤霉酸刺激的拟南芥(GASA)、YABBY转录因子、B3结构域转录因子、多聚半乳糖醛酸酶(PG)和果胶甲酯酶(PME)、MADS-box转录因子、WRKY转录因子、teosinte-branched 1/cycloidea/增殖(TCP)转录因子、III类过氧化物酶(POD)、糖苷水解酶家族1β-葡萄糖苷酶、RNA编辑因子、蛋白磷酸酶(PP2C)、LIM、油菜素类固醇信号激酶(BSK)和查尔酮合酶(CHS)。微小RNA(miRNA)是一类小RNA分子,在基因表达中发挥着重要的调控作用。两篇论文探讨了miRNA在不同植物物种中的作用。第一篇论文开发了一种人工miRNA前体系统,可以在拟南芥和水稻中高效克隆和沉默基因。该系统可以成为这些作物功能基因组学研究的宝贵工具[3]。第二篇论文鉴定并描述了亚麻籽(一种重要的油料作物)正在发育的种子中的miRNA[4]。结果表明,miRNA 在种子发育过程中发挥着重要作用,可以作为作物改良的靶标。总体而言,这些研究有助于我们了解 miRNA 在植物生长发育中的调控作用,并有望应用于作物改良。GWAS 已广泛用于识别与植物重要性状相关的 QTL 或数量性状核苷酸 (QTN)。本期的一篇精彩论文是关于与西瓜驯化相关的瓜氨酸变异的 GWAS 匹配单倍型网络 [ 5 ]。该论文确定了控制瓜氨酸合成的基因组区域,瓜氨酸是一种非蛋白氨基酸,在植物的生长发育中起着至关重要的作用。
最近出现的碱基编辑技术可以在精确的基因组位置创建单碱基突变,而不会导致世代 DNA 双链断裂。通过内源乙酰乳酸合酶 (ALS) 基因 P197 位点的 C 到 T(或互补链上的 G 到 A)碱基编辑器 (CBE),已成功将抗除草剂突变引入不同植物物种,包括拟南芥、西瓜、小麦、马铃薯和番茄。此外,ALS 基因上另一个保守氨基酸 S653 的 G 到 A 的转换可赋予对咪唑啉酮除草剂的耐受性。然而,没有通过 CBE 成功产生这样的突变,可能是因为目标 C 碱基位于经典碱基编辑窗口之外。由于由卵细胞 (EC) 特异性启动子驱动的 CBE 会在卵细胞和早期胚胎中重新编辑野生型等位基因,我们假设碱基编辑结果的多样性可以在后代中大大增加,从而可以选择所需的抗除草剂突变体。为了验证这一假设,我们旨在将 C 到 T 的转换引入 ALS 基因 S653 密码子的补链,在经典碱基编辑窗口之外的 20 nt 间隔序列内的第 10 位上放置一个 C。虽然我们没有检测到碱基编辑的 T1 植物,但在后来的世代中出现了高效且多样的碱基编辑。当 T3 和 T4 种子接受除草剂选择时,我们获得了具有不同编辑结果的抗除草剂突变体。正如预期的那样,大多数抗除草剂植物都含有 G 10 到 A 10 的 S653N 突变。我们的结果表明,CBE 可以在拟南芥中产生咪唑啉酮除草剂抗性性状,并且可能应用于作物以促进杂草控制。
抽象的客观选择性5-羟色胺再摄取抑制剂(SSRI)在怀孕中很常见。它与延迟的新生儿适应性有关。大多数以前的研究都没有针对母亲心理健康障碍的严重程度进行调整,也没有检查SSRI类型和剂量的影响。我们检查了妊娠晚期(20周后)的SSRI治疗是否与延迟的新生儿适应性有关,独立于孕妇抑郁和焦虑。设计,环境和患者基于人群的基于人群的出生队列280 090个婴儿在2011 - 2019年北加州北加州医院15岁。从电子病历中获得了个人水平的药房,孕产妇,妊娠和新生儿数据。妊娠20周后暴露于孕产妇处方。主要结果度量延迟的新生儿适应定义为5分钟的Apgar评分≤5,出生时复苏或进入新生儿重症监护室以进行呼吸支持。次要结局包括主要结果的每个组成部分和更严重的新生儿结局(肺动脉高压,低氧性异性脑病和癫痫发作)。结果7573(2.7%)婴儿在怀孕后期暴露于SSRI。延迟的新生儿适应发生在暴露的11.2%和未暴露婴儿的4.4%(相对风险2.52(95%CI 2.36至2.70))中。多变量调整后,SSRI暴露与新生儿适应性延迟(调整后或2.14(95%CI 1.96至2.32))之间存在关联。该关联取决于剂量。依依西瓜和氟西汀与新生儿适应的最高风险有关。暴露于SSRI的婴儿的结论增加了一种类型和剂量依赖关系的延迟适应风险,指向因果关系。
伊朗伊斯兰共和国享有悠久而悠久的历史,并拥有世界上最古老的文明之一。伊朗位于西南亚,中东,是世界上第18大的国家,从北至亚美尼亚或土库曼斯坦到达波斯湾的南部。该国的规模和地位历史使其成为了东西方和南北贸易路线的战略桥梁,这表明其可能成为商业区域枢纽和有吸引力的旅游目的地的潜力。伊朗是世界上享有四个独特季节的稀有国家之一。在北部,常绿森林在里海的美丽宁静水域上画了一条平行线,这使该国的气候最宜人。在南部,伊朗用华丽而有吸引力的棕榈树和炎热潮湿的气候与波斯湾接壤。在伊朗的东部,人们可以找到带有沙子和繁星夜晚的热甜点。在西部,这片广阔的土地在天空中高高的山脉,吸引了每个访客的眼睛。伊朗都有各种各样的旅游景点,从德黑兰的短途骑行中的滑雪坡到玻璃波斯波利斯的阿契美尼德帝国的2500年历史的废墟,以及Shiraz在Shiraz的Bagh-e-Eram Palace和谐花园,仅举几例。伊朗拥有26个联合国教科文组织世界遗产(24个文化和2个自然地点),比希腊更多 - 加上卡西亚海上的坚固海岸线,这使其成为远足的最佳国家之一,是20个山区度假胜地,冬季运动,波斯湾的海滩,波斯岛上的海滩以及圣殿Reza(Imam Reza)(Imam Reza)(Mimam Reza)。根据世界银行的伊朗经济监护仪,该国的GDP在2022/23年增长了3.8%,这是由服务和制造业扩张的驱动。尽管进行了制裁,但在全球石油市场上,石油部门也扩大了。它在2022年也有88,550,5.7亿人。波斯语是官方语言,伊斯兰教是该国的官方宗教。该国拥有丰富的自然资源,包括第一和第四天然气储量和石油储量,对北非石油富裕国家的石油收入的经济依赖最少。伊朗有很好的位置,可以对基本材料部门产生重大影响。特别是水泥,石头和钢。该国已经是世界上最大的水泥出口商,也是中东最大的水泥生产商。伊朗是其邻国电力的净出口国,拥有丰富的矿产财富,包括大型库珀,铅和锌储量。伊朗的开心果,藏红花,当然还有鱼子酱为农业带来了很大的声誉。它还产生了各种各样的农作物,并且是茄子,洋葱以及包括木瓜,无花果和西瓜在内的一系列水果的前五名生产商之一。
新数字世界中创新的快速发展以及信息,通信和网络物理技术的不断增长已经修改了现代制造,尤其是在行业4.0的背景下[1]。许多制造行业都采用许多尖端技术。在制造业中获得吸引力的一项技术是机器人手臂操纵器。该技术的利用旨在提高效率和生产力。性能和生产的增加是由于机器人组的速度和精度提高了[2]。在过去的30年中,机器人在工业,医学,军事领域和农业中越来越广泛使用[3]。目前,对在农业中使用机器人和自动化技术的使用进行了许多研究,包括种植,喷涂,监测,播种,养育和收获是迈向农业工业化的重要步骤。自动收获机器人技术已成为数字农业最重要的关键部分之一[4]。用一贯的自动化过程代替耗时和劳动密集型的手动采摘任务将导致人类劳累的减少,最终提高了现场生产率。可以通过利用机器人收割来实现这一目标,该机器人收获涵盖了机器人臂,机制和软件系统。尽管如此,如果控制策略的设计不足,则可能导致农业生产损失。[5]。来自世界各地的研究人员已经对不同的蔬菜和水果进行机器人采摘进行了许多研究,例如番茄采摘机器人,草莓拾取机器人,西瓜拾取机器人和莴苣拾取机器人[6]。与采摘机形成鲜明对比的是,这些采摘机器人更加自动化和更聪明。他们已经完成了挑选目标的基本过程,使人们摆脱了繁重的劳动。尽管如此,我们需要智能控制和智能算法来加快机器人的臂,以高精度地收获农作物。本文详细概述了与收获操作器控制问题有关的过去和当前研究。本文的目的是了解控制系统的方法以及通过确定已采取的措施来提出创新控制方法来弥合本文已发表文献中观察到的知识差距的方法,从而将其分为三个主要部分。第一部分集中于农业收获机器人;第二部分是关于深度学习和视觉控制,第三部分是关于运动计划(运动计划)。概述了世界面临的几个挑战,包括COVID-19大流行,人口增长,气候变化和减少粮食生产,这是世界面临的几个挑战。在大流行期间,粮食生产的设施停止了生产,导致世界部分地区的恐慌。尽管令人担忧,但通过提供解决方案的科学技术进步可以减轻许多担忧,尤其是粮食不安全。人口增长进一步加剧了这种粮食不安全问题,在2050年需要将粮食生产增加一倍,以养活世界上100亿的人口。传感器技术,自动化和机器人技术在技术上都在发展[7]。随着智能制造的持续开发以及机器人的不断扩展应用,机器人在越来越复杂的环境中部署,机器人的性能要求变得越来越