对多数观测的估计是量子插入处理的必不可少的任务。通常,通常可以将Obsavables分解为多倍的Pauli字符串的加权总和,即单价Pauli矩阵的张量产物,可以用低深度的Clif-Ford Circits轻松测量。但是,在这种方法中,射击噪声的积累严重限制了有限数量的测量值的可实现差异。我们引入了一种新颖的方法,称为连贯的Pauli总结(CPS),该方法通过利用访问单一量子量子存储器来避免这种限制,在该记忆中可以存储和确保测量信息。cps可减少给定方差所需的测量数量,该测量值与分解可观察到的Pauli字符串数量线性缩放。我们的工作表明了单个长相位量子记忆如何在基本任务中有助于多数Quantum设备的操作。
生成模型具有多种应用,包括语言处理和Birdsong分析。在这项研究中,我们证明了如何使用旨在防止序列产生过度笼的统计检验来推断孟加拉语歌曲中音节序列的最小模型。我们专注于部分可观察到的马尔可夫模型(POMM),该模型由状态和它们之间的概率过渡组成。每个状态都与特定的音节相关联,有可能多个状态与同一音节相对应。此特性将POMM与标准Markov模型区分开,其中每个音节都链接到单个状态。在音节中存在多个状态表明,音节之间的过渡受到这些转变发生的特定情况的影响。我们应用这种方法来分析六个成年男性孟加拉犬的歌曲。我们的结果表明,听觉反馈在塑造孟加拉语歌曲的上下文依赖性音节过渡方面起着至关重要的作用。
实验室实验是使用模型生物阐明生物学作用的。然而,生物的自然栖息地本质上比实验室中的栖息地更为复杂。为了补充实验室实验,我们对广泛用作模型有机体的小型淡水鱼Medaka(Oryzias latipes)进行了现场观测,以阐明其在自然环境中的生态学和行为。我们的结果表明,Medaka在深夜发起求爱和产卵,比预先想象的要早得多。日本Gifu繁殖季节的产卵时间的夜间视频观察(日落:19:00; Sunrise:5:00)揭示了午夜左右产后的Medaka雌性。行为分析表明,Medaka一直不活跃到23:00,活动从0:00增加,从1:00到3:00达到峰值。fur-hoverore,在0:00到4:00之间观察到男性求爱的大幅增加。这些发现提供了第一个经验证据,即Medaka交配开始比以前在实验室中报道的要早,就像早晨在轻度发作之前或之后一样。这项研究强调了现场观察在揭示实验室环境中可能忽略的有机生物学的关键方面的重要性。
Yingyao Hu是Johns Hopkins University的Krieger-Eisenhower经济学教授,他自2007年以来一直在那里工作。。 在加入霍普金斯之前,他曾是德克萨斯大学奥斯汀分校经济学助理教授四年。 他是霍普金斯校友,拥有数学科学的MSE和2001年的经济学硕士学位,并在2003年获得经济学博士学位。 他还曾在密歇根州立大学,上海的Fudan大学和北京的Tsinghua大学学习。 在此之前,他在中国新疆出生和长大。 他的研究兴趣包括微观经济学,经验工业组织和劳动经济学。 在微观经纪学中,他的研究集中在测量误差模型,混合模型,具有固定效应或未观察到的协变量的面板数据模型以及通常具有潜在变量的微观经济模型上的非参数识别和估计。 他对以应用程序为导向的计量经济学特别感兴趣,在这种计量经济学中,计量经济学方法与经济理论或故事密切相结合。 在经验工业组织中,他在拍卖模式中致力于未观察到的异质性,具有未观察到的状态变量的动态模型,学习模型中的信念更新,生产功能的估计以及具有主观信念的动态离散选择。 在劳动经济学中,他的研究在纠正了当前人口调查中的自我报告错误之后,涉及美国的失业率,长期以来对中国失业率的可靠估计以及飓风对美国东海岸的生育能力的影响。Yingyao Hu是Johns Hopkins University的Krieger-Eisenhower经济学教授,他自2007年以来一直在那里工作。在加入霍普金斯之前,他曾是德克萨斯大学奥斯汀分校经济学助理教授四年。他是霍普金斯校友,拥有数学科学的MSE和2001年的经济学硕士学位,并在2003年获得经济学博士学位。他还曾在密歇根州立大学,上海的Fudan大学和北京的Tsinghua大学学习。 在此之前,他在中国新疆出生和长大。 他的研究兴趣包括微观经济学,经验工业组织和劳动经济学。 在微观经纪学中,他的研究集中在测量误差模型,混合模型,具有固定效应或未观察到的协变量的面板数据模型以及通常具有潜在变量的微观经济模型上的非参数识别和估计。 他对以应用程序为导向的计量经济学特别感兴趣,在这种计量经济学中,计量经济学方法与经济理论或故事密切相结合。 在经验工业组织中,他在拍卖模式中致力于未观察到的异质性,具有未观察到的状态变量的动态模型,学习模型中的信念更新,生产功能的估计以及具有主观信念的动态离散选择。 在劳动经济学中,他的研究在纠正了当前人口调查中的自我报告错误之后,涉及美国的失业率,长期以来对中国失业率的可靠估计以及飓风对美国东海岸的生育能力的影响。他还曾在密歇根州立大学,上海的Fudan大学和北京的Tsinghua大学学习。在此之前,他在中国新疆出生和长大。他的研究兴趣包括微观经济学,经验工业组织和劳动经济学。在微观经纪学中,他的研究集中在测量误差模型,混合模型,具有固定效应或未观察到的协变量的面板数据模型以及通常具有潜在变量的微观经济模型上的非参数识别和估计。他对以应用程序为导向的计量经济学特别感兴趣,在这种计量经济学中,计量经济学方法与经济理论或故事密切相结合。在经验工业组织中,他在拍卖模式中致力于未观察到的异质性,具有未观察到的状态变量的动态模型,学习模型中的信念更新,生产功能的估计以及具有主观信念的动态离散选择。在劳动经济学中,他的研究在纠正了当前人口调查中的自我报告错误之后,涉及美国的失业率,长期以来对中国失业率的可靠估计以及飓风对美国东海岸的生育能力的影响。在劳动经济学中,他的研究在纠正了当前人口调查中的自我报告错误之后,涉及美国的失业率,长期以来对中国失业率的可靠估计以及飓风对美国东海岸的生育能力的影响。yingyao已发表在许多经济学和统计学领域的领先期刊上,例如美国经济评论,计量经济学,美国统计协会杂志,《计量经济学杂志》,《计量经济学,游戏与经济行为》,人口经济学杂志和比较经济学杂志。他是《计量经济学杂志》的院士,并曾在几个期刊的编辑委员会任职。他还是《计量错误》杂志特刊杂志的共同编辑。yingyao与三个小孩结婚多年。从他们的角度来看,Yingyao是一位不做任何事情的老师。
肿瘤中的体细胞突变的一部分会产生新的t细胞反应,该反应旨在靶向MHC I- NeoEpitope复合物在肿瘤细胞上,从而介导肿瘤控制或排斥。尽管新发表型对癌症免疫的中心性令人信服,但我们对什么构成的新皮象可以在体内介导肿瘤控制,以及什么区别于绝大多数类似的候选人新EPITOPE的新EPITOPE,这对新生儿的肿瘤进行了介绍,我们对什么知之甚少。在小鼠和临床试验中进行的研究已经开始揭示该领域的意外悖论。 因为癌症的新皮肤跨越了自我和非自我之间的模棱两可的基础,所以某些规则对坦率的非自身抗原(例如病毒或模型抗原)的免疫学为基础,似乎不适用于新皮菌。 由于新皮上与自我介绍如此相似,只有小变化使它们非自我,因此对它们的免疫反应至少部分地调节了对自我的免疫反应的方式。 因此,在这里通过澄清的胸膜选择的镜头来查看和理解新发表。 在这里,批判性地讨论了新皮标的生物学和临床应用中的紧急问题,并提出了一种机械和可检验的框架,该框架解释了这些奇妙抗原的复杂性和转化潜力。在小鼠和临床试验中进行的研究已经开始揭示该领域的意外悖论。因为癌症的新皮肤跨越了自我和非自我之间的模棱两可的基础,所以某些规则对坦率的非自身抗原(例如病毒或模型抗原)的免疫学为基础,似乎不适用于新皮菌。由于新皮上与自我介绍如此相似,只有小变化使它们非自我,因此对它们的免疫反应至少部分地调节了对自我的免疫反应的方式。因此,在这里通过澄清的胸膜选择的镜头来查看和理解新发表。在这里,批判性地讨论了新皮标的生物学和临床应用中的紧急问题,并提出了一种机械和可检验的框架,该框架解释了这些奇妙抗原的复杂性和转化潜力。
抽象设计机器人代理执行开放词汇任务一直是机器人技术和AI的长期目标。最近,大型语言模型(LLM)在创建用于执行开放词汇任务的机器人代理方面取得了令人印象深刻的结果。但是,在不确定性的存在下为这些任务进行规划是具有挑战性的,因为它需要“经过思考链”推理,从环境中汇总信息,更新状态估计以及基于更新的状态估计来生成操作。在本文中,我们提出了一种使用LLM的部分可观察到的任务的交互式计划技术。在拟议的方法中,LLM用于使用机器人从环境中收集丢失的信息,并从收集的观测值中推断出基本问题的状态,同时指导机器人执行所需的操作。我们还通过自我教学使用了精致的Llama 2模型,并将其性能与像GPT-4这样的预训练的LLM进行比较。在仿真和现实环境中的几个任务上都证明了结果。
由Bellare和Rogaway引入的随机Oracle模型(ROM)(CCS 1993)引入了许多(有效)加密原始词和协议的正式安全证明,并且在实践中具有很大的影响。但是,安全模型还依靠一些非常强大且非标准的假设,即对手如何与加密哈希功能相互作用,这在现实世界中可能是不现实的,因此可能导致人们质疑安全分析的有效性。例如,ROM允许自适应编程哈希功能或观察对手进行的哈希评估。我们在后量词设置中引入了随机甲骨文模型的基本弱变体,我们称之为非观察量子量子随机甲骨文模型(无QROM)。我们的模型比Boneh,Dagdelen,Fischlin,Lehmann,Schaffner和Zhandry(Asiacrypt 2011)或Ananth和Bhaskar提出的不可观察的随机甲骨文模型(Provsec 2013)所提出的使用了较弱的启发式方法。 同时,我们表明我们的模型是通过证明重要原始词的安全性(例如可提取的不可兑现的承诺,数字签名以及选择无QROM中的可提取的不可兑现的式公开加密)来确定许多加密方案的可行选择。使用了较弱的启发式方法。同时,我们表明我们的模型是通过证明重要原始词的安全性(例如可提取的不可兑现的承诺,数字签名以及选择无QROM中的可提取的不可兑现的式公开加密)来确定许多加密方案的可行选择。
(2022年3月23日收到; 2022年6月25日修订; 2022年8月6日接受)摘要 - 对于车辆状态估算,传统的卡尔曼过滤器在高斯假设下表现良好,但在实际的非高斯局势(尤其是当噪声是非高斯的重型尾巴)中,它表现出较差的准确性和鲁棒性。在本文中,提出了基于最大相关标准(MCC)的扩展卡尔曼过滤器(EKF)算法(MCCEKF),并建立了横向纵向耦合的车辆模型,同时使用YAW速率,longipudinal peppare的状态观察者,使用了longitialinal peppare,该速度使用了易于使用的速度。在分析了所提出算法的复杂性后,通过双车道变化和正弦扫描转向扭矩输入操作在Simulink/CARSIM仿真实验平台上验证了新算法。实验结果表明,与传统的EKF算法相比,基于MCC的EKF算法在非高斯噪声的情况下具有更强的鲁棒性和更好的估计精度,而MCCEKF在实际情况下更适合于车辆状态估计。关键词:车辆状态估计,最大Correntropy标准,非高斯噪声,车辆动力学1。简介