与人均 GDP 类似的国家相比,伊拉克的园艺业发展程度较低。过去几十年的地缘政治和安全挑战在很大程度上造成了这种情况。伊拉克是一个中等收入国家,人口众多,对园艺产品的需求很大。截至撰写本文时(2024 年初),安全局势稳定,经济发展,投资机会不断涌现。与邻国相比,园艺生产效率较低。伊拉克很大一部分园艺产品依赖进口,尤其是从伊朗和土耳其进口。伊拉克还进口了大部分园艺部门投入品,如化肥、农用化学品和种子。除枣外,其他农产品的出口量微乎其微。园艺投入品供应市场发展良好。市场上有大型跨国公司在运营。产品许可是一个问题。防止假冒或有害农业投入品的规则执行力度较弱。荷兰种子行业已在伊拉克市场取得重大进展,荷兰品牌广受好评。园艺收获后价值链发展不足。收获后加工和包装很少。冷藏能力正在发展,但不足以满足行业需求。由于运输不畅和缺乏冷藏,收获后损失非常高。伊拉克的园艺业正在发展。政治上对更广泛的农业部门的发展有着浓厚的兴趣。保护性园艺和园艺生产现代化的投资正在进行中。过去十年,马铃薯行业发展迅速,荷兰马铃薯种子公司占据了 75% 的进口种子市场。当地对荷兰园艺专业知识有很强的了解,对荷兰园艺产品也很感兴趣。伊拉克存在荷兰园艺业的投资机会。本报告指出了运营环境中的一些挑战,并建议与当地合作伙伴合作克服这些挑战。伊拉克库尔德斯坦地区的相对稳定和投资者开放性是市场进入战略的一部分。种子、设施园艺、专业农业设备、收获后机械和系统以及观赏植物和花卉市场被重点关注为机遇。园艺生产的直接投资以及提供设施园艺和用水效率方面的专业知识也被视为潜在投资者感兴趣的领域。报告最后为潜在投资者提出了建议。
园艺在全球粮食安全,人类营养和经济发展中起着至关重要的作用。然而,园艺作物面临害虫,疾病和环境压力的重大挑战,导致了大量产量损失。由于园艺作物的遗传基础狭窄,传统繁殖的性质狭窄,传统的繁殖方法在发展抗病和高产量的品种方面存在局限性。生物技术工具提供了有希望的解决方案来克服这些挑战并提高园艺中的作物生产力和抗病性。本评论文章探讨了各种生物技术方法,包括标记辅助选择(MAS),基因工程,基因组编辑和微繁殖,及其在提高园艺作物中疾病耐药性和作物生产率方面的应用。mas通过使用与感兴趣的特征相关的分子标记,可以精确,快速选择所需的性状,例如抗病性。遗传工程允许将各种来源的新基因引入园艺作物中,以赋予对特定病原体和害虫的抗性。基因组编辑技术,尤其是CRISPR/CAS9,为植物基因组的精确和有针对性的修饰提供了强大的工具,以增强疾病抗性和其他期望的特征。微繁殖技术促进了无疾病的种植材料的快速繁殖和珍贵种质的保护。本文还讨论了将生物技术工具应用于园艺作物改善的挑战和未来前景。1。将生物技术方法与常规育种和可持续的作物管理实践的融合在一起,在面对全球挑战的情况下,开发抗疾病和高产的园艺作物,确保粮食安全并促进可持续的园艺。关键字:生物技术;抗病性;作物生产率;园艺;分子育种。引言园艺是农业的重要部门,涉及水果,蔬菜,观赏植物和药物作物的种植。它在确保食品和营养安全,产生收入并促进全球可持续发展方面起着至关重要的作用[1]。然而,园艺作物容易受到各种生物和非生物胁迫的影响,包括害虫,疾病和环境因素,这些因素可显着降低作物产量和质量[2]。传统上,传统的育种方法被用来开发具有增强疾病耐药性和生产力的改善品种。但是,这些方法是耗时,劳动密集型的,并且受培养基因库中可用的遗传多样性的限制[3]。生物技术工具已成为有力而创新的方法,以应对园艺作物面临的挑战和
1。探索索尼·拉特纳什·库马尔(Soni Ratnesh Kumar),库玛尔·尼拉(Kumar Neeraj),01综合害虫管理:一项关于烟草pandey sandhya和mishra dev brat caterpillar控制的实验室研究2。传统的护发练习和药用植物性的Priyanka Kumari,Kundan Kumar Ojha 13 Chhattisgarh脱发治疗方法:全面评论和Ashwini Kumar Dixit 3.Tikamgarh区的干旱管理:实施水Rashmi Singh Gaharwar和18“收获作为长期Shashikant Tripathi水安全教授的关键可持续解决方案4.农业浪费对农民的经济益处Aprana Singh博士26 5。评估丁香精油和Neetu Parmar的抗菌特性,Amit Tiwari博士,36丁香提取物针对大肠杆菌尿液分离株Samta Shukla博士,Atul Kumar Tiwari博士6.分析Arun Kumar,Barkha Kumari的货币动态和市场演变40 Attabira&Ashwini Kumar Dixit的观赏植物行业7。太阳能和太阳能周期期间的地磁活动23 Kirti Mishra,Achyut Pandey博士,50 C.M. Tiwari博士,Shivam Tiwari 8。在Shrikant Kol博士下进行多芳基烃降解的生物修复,Arvind Kumar Tripathi博士53有氧运动条件:透视分析Bharat Kumar Chaudhari博士Atul Kumar Kumar Tiwari博士和Anshu Rani Patel博士对量子点K. K. Pandey的光子应用,Anoop Kumar Pandey 61掺杂的液晶和Rajiv Manohar的综述。TNF-A(G308A)基因多态性与必需的Neelam Soni,Abhilasha Shrivastava 71在Vindhyan人群Arvind Kumar Tripathi中高血压,Smriti Shukla,Smriti Shukla11。在来自Kundan Kumar Ojha的三个植物的二级代谢物,Tinkal Mondal,81 Asteraceae家族的三个植物中,作为针对Priyanka Kumari的潜在抗癌剂,Ashwini Kumar dixit,不同的癌症蛋白12。铝背部侧面场层的浸出,银手指和奎山库玛·帕特尔(Krishan Kumar Patel),撒旦和Mishra1 91座台从支出的结晶硅太阳能电池neeraj dwivedi1 13。CDSE纳米材料的合成及其照片催化A. K. Tiwari1和Atul Kumar Tiwari 95活性降解了蓝色墨水的降解14。与Tiwari,C.M.,Tripathi Laxmi,100太阳能和地磁活动Sharma Devendra,Singh,Singh,Y.K。&Tiwari,S.K相关的宇宙射线强度的变化表征。15。Eclipta Prestrata(L)Vaibhav Shukla的解剖学筛查,Sadhana Cahurasia 104 16。可再生能源系统Shivani Pandey和Satanand Mishra博士106优化17。研究Mauganj City,Mahima Pandey和Atul Kumar Tiwari博士117(M.P)印度18。评估草药引起的毒性:评论Anshu Rani Patel博士123 19.肠道菌群在昆虫适应极端的Santosh Kumar Agrawal 129环境中的作用20。智能材料及其应用:创新及其Rajiv Tiwari博士,A。C。Pandey博士134对当今世界Suman Upadhyay的影响
植物工厂可以定义为园艺温室或自动化系统设施,通过控制环境条件,例如光,温度,湿度,CO 2和养分溶液。最近,在工厂工厂中,先进的技术已被用来自动调整和控制增长环境。现代工厂工厂技术的主要好处是安全,保障和稳定的食品供应。他们可以解决减少农业员工减少的问题,由于全球变暖的异常天气以及由于人口过多而导致的粮食短缺。因此,可以预期农业业务的进步。植物工厂可以将基于人造照明的完全封闭的系统和基于天然阳光的系统广泛归类。封闭的植物工厂中使用的主要培养方法是水培法,而天然阳光系统可以同时使用土壤和水培技术。基于阳光的植物工厂可以独自使用自然阳光,或者可以使用自然的阳光和人造光的组合。在一个封闭式工厂工厂中,运营成本很高。这种方法不适合种植大量水果和蔬菜,但叶蔬菜适用。小空间,建筑物内部或以前的工业工厂,是植物生长系统的足够关联。如果环境控制是最佳的,则可以增加植物的营养价值。这种用于重新搜索的温室称为phytotron。另一方面,与封闭系统相比,基于阳光的植物工厂的运行成本较低。它们更适合种植更大的水果和蔬菜,但是由于气候变化不可预测,环境控制很困难。植物工厂的历史和典型的过渡如下:1949年,帕萨迪纳加利福尼亚理工学院的Earhart植物研究实验室开发了第一个温室,控制着照明,温度,湿度,湿度,CO 2,风,雨,雨水和雾气。在1950年代在日本,植物体安装在大学,生物学和农业研究机构中。1952年,国家遗传学研究所的环境监管温室成为该国的第一个植物。在1957年,东京大学的农业教师安装了能够控制温度,湿度和人工照明的生物环境控制设施(Biotron)。它不仅是植物植物,而且是生物学研究目的的动物和昆虫环境控制实验室。在1950年代和60年代,BIOS-3 CELSS(受控生态生命支持系统)始于其他国家的太空发展计划。1967年,威斯康星大学还建立了一个名为Biotron的设施。在1970年代初期,日本有限公司(目前是该协会的名誉会员(日本农业,生物学和环境工程师和科学家学会),Takatsuji Masaki)是世界上第一个开始使用工厂工厂技术进行测试的人。在1980年代在美国,使用自然阳光的大型自动化植物工厂变得广泛。同时,在荷兰,使用人造光作为种植花,观赏植物和幼苗的植物生产工厂也变得突出。在日本,水疗中心(语言植物方法)生物特征培养技术是由Ehime University教授Hashimoto Yasushi提出的。1990年,提出了国际空间站内的一家工厂工厂,对零重力与植物生长之间关系的研究始于NASA开发的沙拉机。在日本,目的是提高生产效率。由于这种重点,已经开发了基于荧光照明的多层培养系统,有效地利用面积较密集的植物布局以及漂浮在洪水床上的栽培面板。机器人还被引入植物工厂,在该工厂中,开始并继续进行播种,收获和包装的测试。2008年,启动了一项日本国家政策,称为“广泛工厂工厂使用的经济增长战略”,以促进完全控制的环境和太阳能植物工厂企业的传播。 在2009年第三次繁荣时期,三菱研究所公司2012年3月的调查显示,建立了各种工厂工厂,并且已经开始运营。 106个工厂仅使用人造光,21使用人工和自然光的组合,而84个独有的自然阳光。2008年,启动了一项日本国家政策,称为“广泛工厂工厂使用的经济增长战略”,以促进完全控制的环境和太阳能植物工厂企业的传播。在2009年第三次繁荣时期,三菱研究所公司2012年3月的调查显示,建立了各种工厂工厂,并且已经开始运营。106个工厂仅使用人造光,21使用人工和自然光的组合,而84个独有的自然阳光。从那时起,从耕种到收获的自动化技术管理元素的快速发展就一直在环境控制开始。到目前为止,据推测,只有机器才在植物工厂内部移动。但是,最近还分析了植物移动系统的土壤培养物。例如,大阪县大学的多阶段生菜培养系统机器人或国家农业和食品研究组织的草莓收获机器人。