PriceWaterHouseCoopers(即,普华永道)采访了在机械和设备行业运营的五家最大的芬兰公司,以分析其在业务中使用数字化的使用。这些公司覆盖了行业中26%以上的人员,并拥有大量分包商。访谈着重于范围内的直接或间接使用数字经济的访谈。采访的公司是Kone Oyj,Metso Oyj,Outotec Oyj,Ponsse Oyj和Valmet Oyj。数字化在这些公司的业务中起着越来越多的作用,无论是作为主要业务产品的一部分还是作为副产品的一部分(主要是与机械使用相关的服务)。但是,这些公司无法根据营业额或与数字化相关的成本提供确切的日期。
摘要。我们为受路易斯·德·布罗格利(Louis de Broglie)的双重分解理论启发的量子力学提出了解释框架。原理是将量子系统的演变分解为两个波函数:与其质量中心相对应的外波函数以及其他宏观自由度的演变,以及对应于其内部变量在中心中心系统中内部变量演变的内部波函数。这两个波函数将具有不同的含义和解释。外波函数“试验”量子系统的质量中心:它对应于de Broglie Pilot Wave。对于内部波函数,我们主张1927年在Solvay国会上提出的解释:颗粒是扩展的,并且电子的(内部)波函数的模块的平方与其在太空中的电荷密度相对应。Résumé。nous提议une delaMécaniquedelaMécaniquequi s'inspire de lathéoriede la doul double Solution de Louis de Broglie。Le principe est de considérer l'évolution d'un sys- tème quantique sous la forme de deux fonctions d'onde : une fonction d'onde externe correspondant à l'évolution de son centre de masse et de ces autres degrés de liberté macroscopique, et une fonction d'onde interne correspondant à l'évolutionde ses变量实习生dans leréférentieldu Center de Masse。ces deux fonctions d'Onde vont vont avoir des ves des desuttations di a vientations。la fonction d'Onde externe pilote le Center de Masse dusystèmeQuantique:Elle sossection use sosectionunde unde unde pilote de louis de louis de Broglie。对于内部波函数,我们捍卫了ErwinSchrödinger在1927年Solvay国会上提出的解释:颗粒是扩展的,并且电子的(内部)波函数模块的平方与其在太空中的负载密度相对应。
摘要 - 我们研究了运输网络上的交通分配问题,考虑到个人驾驶员和由中央运营商控制的大型车队的需求(最小化车队的平均旅行时间)。我们将这个问题视为两人凸局游戏,我们研究了以总需求份额来衡量的协调舰队的规模如何影响无政府状态的价格(POA)。我们表明,对于两端网络,在某些情况下,车队必须在实际影响POA之前达到最低份额,否则这保持不变。此外,对于并行网络,我们证明,在适当的假设下,POA在舰队共享中单调性不足。索引术语 - 运输网络,游戏理论,传统控制。
d≥2的可能具有正(d -1)-hhusdor效法。 在[LM18,定理5.1]中也获得了一些(d -1 -δ)-hhusdor e含量的梯度的传播。 作为|∇u |的零在[NV17]中显示了有限的(d -2) - hausdor效法,在[LM18]中猜测是|∇u |的结果。应预期从任何δ> 0的正(d -2 +δ) - huusdor e含量中保留。 到现在为止,这个猜想仍然开放。 然后,本文的第一个目标是将Malinnikova的结果扩展到Schrödinger类型方程(1.1)。 在[LM18]相同的环境中,以完全的一般性获得了小型溶液的传播。 另一方面,仅在特定环境中得出了梯度小的传播。 的确,人们不能期望在完全普遍的情况下为(1.1)梯度传播小额的繁殖,因为如[hhohon99,备注p。 362],r d的每个闭合子集都可能是这种函数的关键集,因此也没有希望从一组(d -1 -1 -δ) - hausdor效应的集合中传播小的内容,即使对于小δ> 0。 尽管如此,我们的特殊结果对于我们接下来描述的光谱估算的应用程序很充分。可能具有正(d -1)-hhusdor效法。在[LM18,定理5.1]中也获得了一些(d -1 -δ)-hhusdor e含量的梯度的传播。作为|∇u |的零在[NV17]中显示了有限的(d -2) - hausdor效法,在[LM18]中猜测是|∇u |的结果。应预期从任何δ> 0的正(d -2 +δ) - huusdor e含量中保留。到现在为止,这个猜想仍然开放。然后,本文的第一个目标是将Malinnikova的结果扩展到Schrödinger类型方程(1.1)。在[LM18]相同的环境中,以完全的一般性获得了小型溶液的传播。另一方面,仅在特定环境中得出了梯度小的传播。的确,人们不能期望在完全普遍的情况下为(1.1)梯度传播小额的繁殖,因为如[hhohon99,备注p。 362],r d的每个闭合子集都可能是这种函数的关键集,因此也没有希望从一组(d -1 -1 -δ) - hausdor效应的集合中传播小的内容,即使对于小δ> 0。尽管如此,我们的特殊结果对于我们接下来描述的光谱估算的应用程序很充分。
抽象的深度学习模型现在是现代音频综合的核心组成部分,近年来它们的使用已大大增加,从而导致了高度准确的多个任务系统。但是,这种对质量的追求以巨大的计算成本产生了巨大的能源消耗和温室气体的排放。这个问题的核心是科学界用来比较各种贡献的标准化评估指标。在本文中,我们建议依靠基于Pareto最优性的多目标度量,该指标同样考虑模型的准确性和能耗。通过将我们的度量应用于生成音频模型的当前最新技术,我们表明它可以逐渐改变结果的重要性。我们希望提高人们对高质量模型的能源效率的需求,以便将计算成本放在深度学习研究重点的中心。
扰动生物学是一种建模定量细胞行为并理解详细疾病机制的有力方法。然而,癌细胞系对扰动的大规模蛋白质反应资源不可用,从而导致临界知识差距。在这里,我们使用逆相蛋白阵列在> 12,000个癌细胞系样品中生成了〜170种药物化合物的〜210个临床相关蛋白的扰动表达谱。我们表明,整合扰动的蛋白质反应信号提供了对耐药性的机理见解,增加了药物敏感性的预测能力,并有助于识别有效的药物组合。我们构建了“蛋白质 - 药物”连接性的系统地图,并为社区使用开发了一个用户友好的数据门户。我们的研究提供了丰富的资源来研究癌细胞的行为和治疗反应的依赖性,从而实现了广泛的生物医学应用。
摘要。美国西海岸具有巨大的风力发电潜力,尽管由于复杂的沿海气候,其潜力有所不同。在不同天气条件下表征和建模涡轮轮毂高风对于风资源评估和管理至关重要。这项研究使用两阶段的机器学习算法来识别五个大规模气象模式(LSMP):后槽,后距离,距离,前距离,前距离,沟渠和加利福尼亚州高。LSMP与近海风模式有关,在租赁区域内的LiDAR浮标地点特别是在Humboldt和Morro Bay附近的风场开发。虽然每个LSMP都与特征性的大规模大气条件和相应的风向,昼夜变化和射流特征相应的差异,但在每个LSMP中仍然会发生风速的实质性差异。在洪堡,洪伯特的风速上升,在耕种后,距离和加利福尼亚 - 最高的LSMP中,剩余的LSMP中的风速降低,并降低。莫罗湾的平均速度响应较小,表现出在耕作后和加利福尼亚高的LSMP期间的风速提高。除了LSMP外,局部因素(包括土地 - 海热对比和地形)还改变了平均风和昼夜变化。高分辨率快速刷新模型分析在捕获洪堡的平均值和变化方面做得很好,但在莫罗湾(Morro Bay)产生了巨大的偏见,尤其是在预处理和加利福尼亚州高的LSMP期间。发现这些发现是为了指导研究特定的大规模和当地因素对加利福尼亚海上风的影响的案例,并有助于改善数值天气预测模型,从而增强了Orckey Wind Energy生产的功效和可靠性。
1。美国纽约州哥伦比亚大学医学中心神经科学系。 2。 Zuckerman Institute,哥伦比亚大学,纽约,纽约,美国3。 Grossman心理统计中心,哥伦比亚大学,纽约,纽约,美国。 4。 加利福尼亚大学伯克利分子和细胞生物学系5。 麦戈文大脑研究所,马萨诸塞州剑桥,马萨诸塞州剑桥6。 马萨诸塞州剑桥大学,马萨诸塞州脑和认知科学系,马萨诸塞州7。 加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系8。 霍华德·休斯医学院,斯坦福大学,帕洛阿尔托,加利福尼亚州9。 加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系10。 Wu Tsai神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州11。 Bio-X研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州12。 Janelia Research Campus,霍华德·休斯医学院,美国弗吉尼亚州阿什伯恩市13。 计算与神经系统,加利福尼亚理工学院,帕萨迪纳,加利福尼亚州14。 IMEC,鲁汶,比利时15。 卡夫利脑科学研究所,哥伦比亚大学,纽约,纽约16。 加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系17。 霍华德·休斯医学院,哥伦比亚大学,纽约,纽约18。 神经科学研究生课程,斯坦福大学,帕洛阿尔托,加利福尼亚州19。 加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系20。 WU TSAI神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州21。美国纽约州哥伦比亚大学医学中心神经科学系。2。Zuckerman Institute,哥伦比亚大学,纽约,纽约,美国3。 Grossman心理统计中心,哥伦比亚大学,纽约,纽约,美国。 4。 加利福尼亚大学伯克利分子和细胞生物学系5。 麦戈文大脑研究所,马萨诸塞州剑桥,马萨诸塞州剑桥6。 马萨诸塞州剑桥大学,马萨诸塞州脑和认知科学系,马萨诸塞州7。 加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系8。 霍华德·休斯医学院,斯坦福大学,帕洛阿尔托,加利福尼亚州9。 加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系10。 Wu Tsai神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州11。 Bio-X研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州12。 Janelia Research Campus,霍华德·休斯医学院,美国弗吉尼亚州阿什伯恩市13。 计算与神经系统,加利福尼亚理工学院,帕萨迪纳,加利福尼亚州14。 IMEC,鲁汶,比利时15。 卡夫利脑科学研究所,哥伦比亚大学,纽约,纽约16。 加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系17。 霍华德·休斯医学院,哥伦比亚大学,纽约,纽约18。 神经科学研究生课程,斯坦福大学,帕洛阿尔托,加利福尼亚州19。 加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系20。 WU TSAI神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州21。Zuckerman Institute,哥伦比亚大学,纽约,纽约,美国3。Grossman心理统计中心,哥伦比亚大学,纽约,纽约,美国。4。加利福尼亚大学伯克利分子和细胞生物学系5。麦戈文大脑研究所,马萨诸塞州剑桥,马萨诸塞州剑桥6。马萨诸塞州剑桥大学,马萨诸塞州脑和认知科学系,马萨诸塞州7。加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系8。霍华德·休斯医学院,斯坦福大学,帕洛阿尔托,加利福尼亚州9。加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系10。Wu Tsai神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州11。 Bio-X研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州12。 Janelia Research Campus,霍华德·休斯医学院,美国弗吉尼亚州阿什伯恩市13。 计算与神经系统,加利福尼亚理工学院,帕萨迪纳,加利福尼亚州14。 IMEC,鲁汶,比利时15。 卡夫利脑科学研究所,哥伦比亚大学,纽约,纽约16。 加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系17。 霍华德·休斯医学院,哥伦比亚大学,纽约,纽约18。 神经科学研究生课程,斯坦福大学,帕洛阿尔托,加利福尼亚州19。 加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系20。 WU TSAI神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州21。Wu Tsai神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州11。Bio-X研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州12。Janelia Research Campus,霍华德·休斯医学院,美国弗吉尼亚州阿什伯恩市13。计算与神经系统,加利福尼亚理工学院,帕萨迪纳,加利福尼亚州14。IMEC,鲁汶,比利时15。卡夫利脑科学研究所,哥伦比亚大学,纽约,纽约16。加利福尼亚州帕洛阿尔托市斯坦福大学神经生物学系17。霍华德·休斯医学院,哥伦比亚大学,纽约,纽约18。神经科学研究生课程,斯坦福大学,帕洛阿尔托,加利福尼亚州19。加利福尼亚州帕洛阿尔托市斯坦福大学电气工程系20。WU TSAI神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州21。WU TSAI神经科学研究所,斯坦福大学,帕洛阿尔托,加利福尼亚州21。加利福尼亚州帕洛阿尔托市斯坦福大学生物工程系22。加利福尼亚州帕洛阿尔托市斯坦福大学医学院神经外科系23。霍华德·休斯医学院,伯克利,加利福尼亚州24。马里兰州巴尔的摩约翰·霍普金斯大学生物医学工程系
我们还感谢世界银行迅速的社会反应适应性和动态社会保护(RSR-ADSP)伞基金计划,该计划得到了俄罗斯联邦,英国,挪威,瑞典,澳大利亚,澳大利亚,丹麦,丹麦,比尔和梅琳达·盖茨基金会,美国俄亥俄州基金会,GHR基金会和UBS优化基金会的支持。
1.0 APPLICATION ...................................................................................................... 1 2.0 AFFIDAVIT ........................................................................................................... 3 3.0 EXECUTIVE SUMMARY ...................................................................................... 5 4.0 INTRODUCTION .................................................................................................. 7 4.1 Corporate Profile ....................................................................................... 7 4.2 Purpose .................................................................................................... 7 4.3 Background ............................................................................................... 7 5.0 RATIONALE ............................................................................................................................................................................................................................................................................................................................................................................................................................................................... …….......................................................................................................................................................................................................................................................................................................................................................................................................................................................................