将立即通过增强的镜像视频显示,并与他们的学生一起视觉实现。以这种方式,我们的方法赋予了教学的能力,其概念的内在形式被称为角色实施例[Keevallik 2010],在该概念上,学生可以通过视觉吸引学生作为历史人物,科学专业人士或文化偶像,从而创造出更丰富,更沉浸式的学习经验,以实现的角色扮演[CarniceroerPérezet al al and。2023]。要以更高的精确度来完善和直接产生图像,这项研究特别结合了ControlNet,这是一种稳定扩散的开发,旨在增强对生成的输出的控制,从而确保视觉转换与文本提示的教育目标和提供的相机输入图像Snapshot [Zhang等人[Zhang et al》中均符合。2023]。上游,我们整合了语音识别,以将自然的口语接口与受控的导向图像生成相关。生成的AI模型,例如DALL-E或GPT4,可以从文本描述中综合高保真视觉内容。尽管它们的实用性,这些模型从根本上受到其对文本的依赖的限制,因为它们是唯一的条件输入。此约束限制了其将生成的输出调整为结构化空间输入的能力,例如深度图,语义分割掩码或姿势配置。因此,此类模型不适合需要与实时背景(例如交互式环境和实时个人化)进行精确对齐的应用。2021]。2020]。2020]与ControlNet结合[Zhang等。相比之下,ControlNet通过启用多模式输入模式(包括深度图)的整合到生成过程中来解决这一差距。深度调节是将视觉输出与参与者的物理概况(例如身体形状和空间布置)进行实时设定的关键。此功能将生成模型的适用性扩展到需要上下文和参与者特定输出的域。通过利用基于深度的调节,ControlNet促进了视觉效果的产生,这些视觉效果不仅在语义上是准确的,而且在空间上是连贯的,从而支持了新颖的应用,例如具有体现的角色扮演和沉浸式,上下文感知的教育体验。通过生成AI的角色体现与沉浸式学习的研究保持一致,当学生在教育场景中扮演角色或角色时,学生更加深入地参与。研究表明,体现历史人物的体现会发展出同理心并增强记忆力保留,因为学生与材料有着共同的联系[Miguel-Revilla等。类似地,在STEM领域,学生可以通过诸如科学家,工程师或宇航员等原型横向探索角色,这些原型将其转化为对主题的更强识别并支持持续的参与[Singer等人。更详细地探索了各种文化舞蹈风格,作为教学场景,以更直接的舞蹈学生与视觉体现的教学环境联系起来。本文采用了稳定扩散的机制引入了一个框架[Ho等。2023]实现适用于教学环境中的有针对性的特定角色转换。这种集成使受控的视觉自定义符合教室内成像的人类形式,从而使教育工作者可以设计具有与各种主题的教育目标相吻合的沉浸式,上下文准确的体验。本文的主要技术贡献是:
使用此QR码,白色就像条形码。即使它与CDC卡不同,所有CDCC疫苗卡也可用。如果有人想检查对手,您只能在手机或其他金属上扫描QR鳕鱼。这就是为什么他或她给了他们您的朋友。但是,您所有的信息都无法在系统中显示给他们。
传统的平面视频流是移动系统中最流行的应用。360◦视频内容和虚拟现实(VR)设备的快速增长正在加速VR视频流的采用。不幸的是,由于视频流过程中涉及的主要系统组件(例如,DRAM,显示界面和显示面板)的高功耗(例如DRAM,显示界面和显示面板),视频流消耗了大量的系统能量。例如,在召开平面视频流中,视频解码器(在处理器中)解码视频帧,并将它们存储在DRAM主内存中,然后在显示控制器(在处理器中)将解码的帧从DRAM传输到显示面板。此系统体系结构导致大量数据移动到DRAM以及高DRAM带宽使用情况。因此,DRAM本身消耗了超过30%的视频流能量。我们提出了burstlink,这是一种新型的系统级技术,它证明了平面和VR视频流的能源效率。burtlink基于两个关键想法。首先,burtlink直接从视频解码器或GPU传输了一个解码的视频框架到显示面板,完全绕过主机DRAM。到此目的,我们使用双重远程帧缓冲区(DRFB)而不是DRAM的双帧缓冲区扩展了显示面板,以便系统可以使用新框架直接更新DRFB,同时使用DRFB中存储的当前帧更新显示面板的像素。第二,使用现代显示界面的最大带宽将完整的解码框架以单个爆发的形式传输到显示面板。与传统的系统不同,帧传输速率由显示面板的像素上的吞吐量限制,burtlink始终可以通过将帧传输从drfb启用的像素更新中解除帧传输来充分利用现代显示器接口的高带宽。这种直接和突发的框架转移链接链接的这种直接和爆发的框架转移可显着降低视频显示的能量消耗1)通过1)减少对DRAM的访问,2)增加怠速功率状态的系统的居留性,3)在快速传输后,启用了几个系统组件的时间功率传输 - 每个系统组件将每个帧转移到DRFB中。