摘要 — 经颅磁刺激 (TMS) 是一种非侵入性、有效且安全的神经调节技术,可用于诊断和治疗神经和精神疾病。然而,大脑组成和结构的复杂性和异质性对准确确定关键大脑区域是否接收到正确水平的感应电场提出了挑战。有限元分析 (FEA) 等数值计算方法可用于估计电场分布。然而,这些方法需要极高的计算资源并且非常耗时。在这项工作中,我们开发了一个深度卷积神经网络 (DCNN) 编码器-解码器模型,用于从基于 T1 加权和 T2 加权磁共振成像 (MRI) 的解剖切片实时预测感应电场。我们招募了 11 名健康受试者,并将 TMS 应用于初级运动皮层以测量静息运动阈值。使用 SimNIBS 管道从受试者的 MRI 开发头部模型。将头部模型的整体尺寸缩放至每个受试者的 20 个新尺寸尺度,形成总共 231 个头部模型。进行缩放是为了增加代表不同头部模型尺寸的输入数据的数量。使用 FEA 软件 Sim4Life 计算感应电场,将其作为 DCNN 训练数据。对于训练好的网络,训练和测试数据的峰值信噪比分别为 32.83dB 和 28.01dB。我们模型的关键贡献在于能够实时预测感应电场,从而准确高效地预测目标脑区所需的 TMS 强度。
摘要 — 近年来,人们对利用基于脑电图 (EEG) 信号的深度学习模型监测癫痫患者的兴趣日益浓厚。然而,这些方法在应用于收集训练数据的环境之外时,往往表现出较差的泛化能力。此外,手动标记 EEG 信号是一个耗时的过程,需要专家分析,这使得将特定于患者的模型微调到新环境成为一项昂贵的任务。在这项工作中,我们提出了最大均值差异解码器 (M2D2),用于自动时间定位和标记长时间 EEG 记录中的癫痫发作,以协助医疗专家。我们表明,当对不同于训练数据的临床环境中收集的 EEG 数据进行评估时,M2D2 实现了 76.0% 和 70.4% 的时间定位 F1 分数。结果表明,M2D2 的泛化性能明显高于其他最先进的基于深度学习的方法。
创建灵活而强大的脑机接口 (BMI) 目前是一个热门的研究课题,医学、工程、商业和机器学习社区已经对此进行了数十年的探索。特别是,使用强化学习 (RL) 的技术已显示出令人印象深刻的结果,但在 BMI 社区中却代表性不足。为了进一步阐明这种有希望的关系,本文旨在对 RL 在 BMI 中的应用进行详尽的回顾。我们在这篇评论中的主要重点是提供基于 RL 的 BMI 中用于解码神经意图的各种算法的技术摘要,而不强调神经信号的预处理技术和 RL 的奖励建模。我们首先根据用于神经解码的 RL 方法类型组织文献,然后解释每种算法的学习策略及其在 BMI 中的应用。提供了比较分析,重点介绍了神经解码器之间的相似性和独特性。最后,我们以讨论 RLBMI 的现阶段结束这篇评论,包括它们的局限性和未来研究的有希望的方向。
量子纠错技术是消除量子计算机运行时噪声的重要方法。针对噪声带来的问题,本文利用强化学习对Semion码的缺陷进行编码,并利用经验重放技术实现译码器的设计。Semion码是与Kitaev toric码具有相同对称群Z 2 的量子拓扑纠错码,利用纠错码的拓扑特性将量子比特映射到多维空间,计算出译码器的纠错准确率为77.5%。计算拓扑量子Semion码的阈值,根据码距的不同,得到不同的阈值,当码距为d = 3, 5, 7时,p阈值= 0.081574,当码距为d = 5, 7, 9时,p阈值= 0.09542。并设计Q网络来优化量子电路门的代价,比较不同阈值下代价降低的大小。强化学习是设计Semion码译码器、优化数值的重要方法,为未来的机器工程译码器提供更通用的错误模型和纠错码。
研究人员通常试图从功能性MRI测量的大脑活动中解码精神状态。严格的解码需要使用形式的神经预测模型,如果它们使用整个大脑,则可能是最准确的。但是,计算负担和缺乏现成的统计方法的解释性可能会使全脑解码具有挑战性。在这里,我们提出了一种构建既可以解释又有能力的全脑性解码器的方法。我们将部分最小二乘算法扩展到具有可变选择的正则化模型,该模型提供了独特的“一次性”,“以后调整一次”方法:用户只需拟合一次模型,并且可以在事后选择最佳的调音参数。我们在实际数据中显示,我们的方法随着数据大小的增加而表现得很好,并产生可解释的预测因子。该算法以多种语言公开使用,希望可以在神经成像研究中更广泛地实施可解释的全脑预测因子。
计算建模是现代药物发现的重要组成部分。其最重要的应用之一是选择有希望的药理学相关靶蛋白候选药物。由于结构生物学的不断进步,在与各种疾病相关的众多蛋白质中发现了小有机分子的假定结合位点。这些宝贵的数据为通过应用数据挖掘和机器学习来构建预测靶位结合分子的有效计算模型提供了新的机会。特别是,深度神经网络是一种强大的技术,能够从复杂数据中学习,从而做出明智的药物结合预测。在本文中,我们描述了 Pocket2Drug,这是一种深度图神经网络模型,用于预测给定配体结合位点的结合分子。这种方法首先从大量口袋结构数据集中通过监督训练学习小分子的条件概率分布,然后从训练模型中抽样候选药物。全面的基准模拟表明,与传统的药物选择程序相比,使用 Pocket2Drug 显著提高了找到与靶口袋结合的分子的机会。具体来说,已知结合物针对测试集中存在的多达 80.5% 的靶标生成,而测试集由与用于训练深度图神经网络模型的数据不同的数据组成。总体而言,Pocket2Drug 是一种很有前途的计算方法,可用于指导新型生物制药的发现。
来源:Activate Consulting《Activate 技术和媒体展望,2022》(2021 年 10 月)主要来源可参见该文件
随着嘈杂的中型量子 (NISQ) 设备的出现,实用的量子计算似乎已经触手可及。然而,要超越原理验证计算,当前的处理架构将需要扩展到更大的量子电路,这将需要快速且可扩展的量子误差校正算法。在这里,我们提出了一种基于神经网络的解码器,对于受去极化噪声和综合征测量误差影响的稳定器代码系列,该解码器可扩展到数万个量子比特(与其他最近的机器学习启发解码器相比),并且在各种错误率(低至 1%)下解码时间比最先进的联合查找解码器更快。关键创新是通过在底层代码上移动预处理窗口来自动解码小规模的错误综合征,类似于模式识别方法中的卷积神经网络。我们表明,这种预处理步骤可以在实际应用中有效地将错误率降低多达 2 个数量级,并且通过检测相关效应,将实际错误阈值提高到比传统纠错算法(例如联合查找或最小权重完美匹配)的阈值高出 15%,即使在存在测量误差的情况下也是如此。这种机器学习辅助量子纠错的现场实施将是将纠缠边界推向 NISQ 视界之外的决定性一步。
量子设备的错误率比运行大多数量子应用程序所需的错误率高出几个数量级。为了弥补这一差距,量子纠错 (QEC) 对逻辑量子位进行编码并使用多个物理量子位分发信息。通过定期对逻辑量子位执行综合征提取电路,可以在运行程序时提取有关错误(称为综合征)的信息。解码器使用这些综合征来实时识别和纠正错误,这对于防止错误累积是必要的。不幸的是,软件解码器速度很慢,而硬件解码器速度快但准确性较低。因此,到目前为止,几乎所有的 QEC 研究都依赖于离线解码。为了在近期的 QEC 中实现实时解码,我们提出了 LILLIPUT——一种轻量级低延迟查找表解码器。LILLIPUT 由两部分组成——首先,它将综合征转换为错误检测事件,这些事件被索引到查找表 (LUT) 中,其条目实时提供错误信息。其次,它通过离线运行软件解码器,对 LUT 进行错误分配编程,以应对所有可能的错误事件。LILLIPUT 可以容忍量子硬件中任何操作的错误,包括门和测量,并且可容忍的错误数量随着代码大小而增加。LILLIPUT 在现成的 FPGA 上使用的逻辑不到 7%,因此可以实际采用,因为 FPGA 已经用于设计现有系统中的控制和读出电路。LIL-LIPUT 的延迟只有几纳秒,可以实现实时解码。我们还提出了压缩 LUT (CLUT) 来减少 LILLIPUT 所需的内存。通过利用并非所有错误事件都同样可能的事实,并且只存储最可能的错误事件的数据,CLUT 将所需内存减少了多达 107 倍(从 148 MB 减少到 1.38 MB),而不会降低准确性。
