纠缠是量子力学的决定性特征。二分纠缠以冯·诺依曼熵为特征。然而,纠缠不仅仅用数字来描述,它还以其复杂程度为特征。纠缠的复杂性是量子混沌开始、纠缠谱统计的普遍分布、解缠算法的难度和未知随机电路的量子机器学习以及普遍的时间纠缠涨落的根源。在本文中,我们用数字方式展示了如何通过在随机 Clifford 电路中掺杂 T 门来实现从简单纠缠模式到通用复杂模式的转变。这项工作表明,量子复杂性和复杂纠缠源于纠缠和非稳定器资源的结合,也称为魔法。
摘要 我们研究了由爱因斯坦引力与具有非平凡势的标量场耦合而成的全息五维模型中全息子区域复杂性的体积公式。对偶四维规范理论不是共形的,并且在两个不同的固定点之间表现出 RG 流。在零度和有限温度下,我们表明全息子区域复杂性可用作模型非共形性的度量。该量在纠缠区域的大小方面也表现出单调行为,就像此设置中的纠缠熵的行为一样。对于零温度下的全息重正化子区域复杂性,由于连接和断开的最小表面之间的解缠转变,也存在有限的跳跃。
在我们目前所处的救赎历史时代,阅读有关公开绞刑的记载时,很难不立即想到基督教意识中也许最为突出的绞刑——耶稣基督的绞刑。亚历山大的奥利金等解经家通过旧约圣经中基督被钉十字架的完整启示所投射的阴影,解读了约书亚记 8:29 中的绞刑。然而,在这样做时,他的解释很容易受到某些反驳。例如,如果所有旧约中关于公开绞刑的记载都只是预示基督被钉十字架的背景细节,那么了解这些绞刑周围的文化环境如何能帮助我们更好地理解基督被钉十字架的独特性?为了进行反驳,本文将尝试理解约书亚记 8 章和旧约其余部分的“挂在木头上”的意义。在此之后,它将对关键动词 ה ָל ָת 进行词汇研究,探究古代近东的战争和残害传统,评估旧约中关于绞刑和公开残害的其他记载,最后探讨约书亚记 8 章中艾城王之死和展示的更广泛功能。
在假设的场景中,中国和德国经济在类似于“冷战2.0”的假设情况下,将世界经济的分离或分散量化为三个不同的集团:G7或“西方”经济学,中国和她的盟国,以及中立国家。在这个框架内,我们研究了一个极端情况:完全停止德国(以及其他G7经济体及其盟友)和中国之间的贸易。在艰难的脱钩之后,国际贸易将必须完全重新定位在两个竞争对手街区内以及两个街区和中立国家之间的贸易。通过检查一个极端情况,即两个“冷战”区块之间的贸易为零,我们的目标是描述可能的结果的界限,并提供最坏的案例观点,以告知外交政策选择的经济成本,以防万一,F.I.,f.i。在2022年,关于德国对俄罗斯天然气的依赖的辩论以及俄罗斯天然气供应终结的经济成本表明,当不确定性很高时,利益集团在实时决策过程中成为有力的参与者(Moll,Schularick和Zachmann 2023)。我们探讨了允许德国和欧洲的政策制定者提前权衡政策选择的关键问题。我们依靠Baqaee和Farhi(2021)模型,该模型去年证明了其有用性,当时它被用来衡量俄罗斯天然气供应对德国的影响的影响(Bachmann等人(Bachmann等)2022; Moll,Schularick和Zachmann 2023)。在突然发生“冷火鸡”硬耦情况的情况下,德国可能会经历GNE
与传统技术相比,产品质量并减少了处理时间。这项研究旨在使用农业废物生物量来开发PAM台式反应堆。已修改了商业微波炉,包括对难治材料的支撑,其中添加了60 g的碳化硅(SIC)(SIC)(SIC)并容纳石英反应器。反应器配备了温度监测系统,CO 2注入系统和气体提取。作为初步结果,在400°C和500°C的温度下进行的地面树皮热解会导致30.75和27.31%的生物char屈服和固定碳含量分别为64.06和68.05%。将进行新的测试和调整,以优化PAM过程中获得的产品的性能和质量。关键词:生物质,生物炭,农业废物。
首次,对关键生物量成分的热解的完整表征 - Xylan(基于戊糖基的硬木半纤维素的代表)和葡萄糖植物(基于己糖的软木半纤维素的代表)是通过基于tga(themogravimetric actalric forsy for for for for for for themogravimetroce for for themogravimetroce for for for for forsal actal finsiS for for for for for forsal forsy for forsal finsiS for for for forsal finsiS for for for forsal-ysiss),以前获得的代表。同时实现了左右的质量收益率,液相,液相的质量产物的质量收益率的详细量化,同时达到了质量平衡,从而提供了独特的动力学信息。热解测试也在固定床反应器中进行,以探索更大的尺度并验证基于TGA的方法。在两个尺度上,不同的分析技术(在线MS,离线GC-FID/MS,Karl Fischer滴定)和采样方案(冷冷凝器,吸引人陷阱,蒸气打印机,燃气袋)进行调整以实现质量平衡和严格的产品概况的调整。当纤维素的热解(选择为参考系统) - 最大化生物油的产生(主要是左旋葡聚糖),而Xylan的热解会导致固体,液体和气体相之间的均匀分布,并且在C 1 -C 9范围内均匀地跨越了固定的氧气。有趣的是,葡萄糖干在纤维素和Xylan之间显示出中间行为,反映了其中间化学结构。拉曼和对收集的炭样品的氧化分析表明,与纤维素相比,半纤维素的固体残留物的有序和灰分较高。使用最近的集团动力学模型的预测来基准针对半纤维素热解的先前艺术。新信息的丰富性和全面性显然出现并铺平了动力学建模底层的途径。
摘要:磷 (P) 是植物生长必需的常量营养素之一,是提高多种作物生产性能的必需资源,尤其是在风化程度较高的土壤中。然而,以肥料形式施用的大部分营养素在中期会变得“惰性”,无法被植物吸收。合理使用磷对环境可持续性和社会经济发展至关重要。因此,需要替代方法来管理这种营养素,而使用磷溶解微生物是一种优化作物利用磷的选择,可以探索土壤中可用程度较低的营养成分,并减少对磷肥的需求。本研究的目的是讨论磷的重要性以及微生物如何促进磷在农业中的可持续利用。在这篇综述研究中,我们介绍了几项关于微生物作为土壤磷动员剂的作用的研究。我们描述了养分对植物的重要性以及与其自然储备的不可持续开发和化学肥料的使用有关的主要问题。我们主要强调微生物如何构成释放养分惰性部分的基本资源,其中我们描述了几种溶解和矿化的机制。我们还讨论了接种磷溶解微生物给作物带来的好处以及将其用作生物接种剂的做法。使用微生物作为接种剂是可持续农业未来的可行资源,主要是因为它的应用可以显著减少磷的使用,从而减少磷及其储备的开发。此外,必须进行新的研究以开发新技术、勘探新的生物产品和改进管理实践,以提高农业中磷的利用效率。
1 中国科学院地质与地球物理研究所地球与行星物理重点实验室,北京,中国;2 新墨西哥大学地球与行星科学系,美国新墨西哥州;3 雅典国立技术大学矿业与冶金工程学院地质科学系,希腊雅典;4 生命化学演化研究人员网络,英国利兹;5 澳门科技大学月球与行星科学国家重点实验室,中国澳门特别行政区;6 加州理工学院喷气推进实验室火星计划办公室,美国加利福尼亚州帕萨迪纳;7 概念理论创意部门,美国佛罗里达州迈阿密 33131;8 莱斯特大学物理与天文学院空间研究中心,英国莱斯特 LE17RH;9 欧洲空间局载人与机器人探索中心(HRE/ESA),欧洲空间研究与技术中心(ESTEC),荷兰诺德维克; 10 爱丁堡大学物理与天文学院 James Clerk Maxwell 大楼,Peter Guthrie Tait 路,爱丁堡 EH9 3FD,英国;11 美国国家航空航天局艾姆斯研究中心,加利福尼亚州山景城 94035,美国;12 萨斯喀彻温大学药学与营养学院,加拿大;13 贝尔法斯特女王大学生物科学学院全球粮食安全研究所,19 氯花园,贝尔法斯特 BT9 5DL,英国;14 美国普林斯顿大学天体物理科学系和普林斯顿等离子体物理实验室;15 卡尔顿大学机械与航空航天工程系,加拿大安大略省渥太华;16 捷克科学院 J. Heyrovsky 物理化学研究所,捷克共和国布拉格;17 山东大学(威海)空间科学研究所,中国山东省;18 日本宇宙航空研究开发机构 (JAXA),日本东京; 19 匈牙利布达佩斯天文与地球科学研究中心;20 希腊雅典全球商业应用有限公司,GRC(治理、风险与合规);21 中国科学院国家空间科学中心 NSSC,中国北京;22 德国柏林 DLR 行星研究所;23 香港大学,中国香港,北京;24 意大利罗马第一大学生物与生物技术系;25 英国米尔顿凯恩斯开放大学物理科学学院;26 意大利维泰博图西亚大学生态与生物科学系;27 印度艾哈迈达巴德印度空间研究组织物理研究实验室;28 美国圣路易斯华盛顿大学地球与行星科学系和麦克唐纳空间科学中心;29 德国波鸿鲁尔大学福音神学系