作为一种广泛使用且经过验证的技术,触摸屏正在进入民用飞机的驾驶舱。作为 ACROSS(减少压力和工作量的先进驾驶舱)项目的一部分,NLR 设计了一种具有触摸交互功能的创新驾驶舱显示器,用于战术飞行控制;改变飞机的(垂直)速度、航向和/或高度。在当前的驾驶舱配置中,此自动驾驶 (AP) 功能的控件在空间上与它们调整的参数的可视化分离,从而引入了身体和精神工作量的方面。本文介绍了消除这种物理间隙并通过直接操作 (DM) 创建直观交互的人机界面 (HMI) 设计过程。DM 的特点是直接在图形对象可视化的位置对其进行操作,其方式至少与操作物理对象大致相对应。它具有高度直观性,不易出错的潜力。因此,假设 HMI 设计可以减少飞行员的工作量并同时提高态势感知 (SA)。使用 NLR 的飞行模拟器对该概念进行评估。实验结果表明,战术飞行控制设计概念具有巨大潜力,但交互实现需要进一步改进,因为它增加了飞行员的工作量,尤其是在湍流条件下。
van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
精确的脉冲定时和时间编码在昆虫的神经系统和高阶动物的感觉外围中得到广泛应用。然而,传统的人工神经网络 (ANN) 和机器学习算法无法利用这种编码策略,因为它们的信号表示是基于速率的。即使在人工脉冲神经网络 (SNN) 的情况下,确定时间编码优于 ANN 的速率编码策略的应用仍然是一个悬而未决的挑战。神经形态传感处理系统为探索时间编码的潜在优势提供了理想的环境,因为它们能够从相对脉冲定时中有效地提取聚类或分类时空活动模式所需的信息。在这里,我们提出了一个受沙蝎启发的神经形态模型来探索时间编码的好处,并在基于事件的传感处理任务中对其进行验证。该任务包括仅使用八个空间分离的振动传感器的相对脉冲定时来定位目标。我们提出了两种不同的方法,其中 SNN 以无监督的方式学习聚类时空模式,并展示了如何通过分析和多个 SNN 模型的数值模拟来解决该任务。我们认为,所提出的模型对于使用精确脉冲时间进行时空模式分类是最佳的,可以用作评估基于时间编码的事件感知处理模型的标准基准。
[1] Soundguard Digital Plantronics拥有复杂的算法,包括:通过将声音限制为118 DBA来防止声学冲击; G616反启动保护将噪声水平限制在102 dB以下的SPL以下,因此符合澳大利亚通信行业论坛(ACIF)G616建议;每日平均噪声暴露措施和控制声音,以防止平均每日声音暴露超过80 dBA或85 dBA时间加权平均值(TWA)。
用法指南:请参阅https://eprints.bbk.ac.uk/policies.html的用法指南,或者请联系lib-eprints@bbbk.ac.uk。
聚合物电极将激光切割成弹簧形的同心设计,并连接到硅基板上。“此设计可增强电极的可伸缩性,并确保电流靶向皮肤上的特定位置,从而提供局部刺激以防止任何疼痛。” Abdulhameed Abdal博士说。加州大学圣地亚哥分校的机械和航空航天工程系的学生和该研究的另一位联合首先作者。Abdal和Blau与UC San Diego Nano Engineering本科生Yi Qie,Anthony Navarro和Jason Chin合成电极的合成和制造。
在触摸受体,胶质细胞和辅助细胞中起关键作用。然而,这种调节的基础机制知之甚少。我们首次表明,在秀丽隐杆线虫鼻触摸受体的神经胶质中需要氯化物通道CLH-1,以进行触摸反应和调节兴奋性。使用体内Ca 2+和Cl-成像,行为测定以及遗传和药理操作的组合,我们表明CLH-1介导了胶质GABA抑制灰分感官神经元功能以及用于调节灰神经元cAMP水平的CL-通量。最后,我们表明大鼠CLC-2通道挽救了CLH-1的鼻子触摸不敏感的表型,强调了整个物种功能的保护。我们的工作将神经胶质Cl-通道视为触摸灵敏度的新型调节剂。我们提出,Glial CLH-1调节Ca 2+与Ash神经元中CAMP信号之间的相互作用,以控制蠕虫的鼻子触摸受体的灵敏度。
(第15.105(b)部分)该设备已经过测试并发现符合B类数字设备的限制,根据FCC规则的第15部分。这些限制旨在提供合理的保护,以防止住宅安装中有害干扰。此设备会生成,使用和可以辐射射频能量,如果未根据说明进行安装和使用,可能会对无线电通信造成有害干扰。但是,不能保证在特定安装中不会发生干扰。如果此设备确实会对广播或电视接收造成有害干扰,这可以通过关闭设备关闭并继续确定,则鼓励用户尝试通过以下一项或多项措施来纠正干扰: