相信上帝的人以圣经的教义为中心。我们是完美的吗?当然不是。我们是否努力成为对我们家庭、社区和世界更好的人?我们会努力。虽然我们努力通过在线和面对面的周日礼拜与教会社区保持联系,但我们知道我们并没有接触到每个人。作为我们更大的教会社区的成员,您可以通过扩大圈子并让人们关注我们的使命来提供帮助。我们正进入一年中全世界庆祝耶稣诞生和基督教教义的时刻。2024 年,救赎主路德教会 (RLC) 的社区专注于各种外展工作,同时继续将教堂作为我们的行动中心。许多幕后的天使让每个周日礼拜都成为一件值得期待的事情。借用我今年读过的一篇文章,诗人罗伯特布朗宁写道:“一个人的触角必须超出他的掌握范围,否则天堂有什么用?”社会每天、每月、每年都面临挑战。当我们向世界提出需求时,人们可能会不知所措。也许更好的应对策略是认识到我们每天在整个社区取得的积极成果?传统上,十二月是 RLC 最大的“捐赠”月份。我们向食品银行、救世军、加拿大路德世界救济会、路德关怀社区等组织奉献我们的时间、才华和财富。是的,需求仍然存在,但请记住认识到你拥有什么并继续捐赠。这是 2025 年 1 月的管理信息。您的领导团队正在制定我们的 2025 年预算,“捐赠”始终是预算收入方面的考虑因素。愿您对 RLC 和社区的持续慈善事业在 2025 年及以后继续下去。
摘要:几乎所有的脑细胞都含有原发性纤毛,触角样微管感觉细胞器,它们在其表面上起着至关重要的作用。在神经发育阶段,纤毛对于大脑形成和成熟至关重要。在成人大脑中,纤毛作为接收和传递各种信号并调节细胞间通信的信号枢纽的重要作用。这些独特的作用表明纤毛的功能以及可能在整个人类寿命中发生变化。为了进一步了解纤毛角色的年龄依赖性变化,我们识别并分析了整个人类寿命中纤毛结构和功能成分表达的年龄依赖性模式。,我们从勃雷恩斯潘潘特(Brainspan Atlas)获得了16个大脑区域的纤毛转录组数据,并通过计算回归系数,使用线性回归模型分析了年龄依赖性的表达模式。我们发现,在至少一个大脑区域中,有67%的纤毛转录本与年龄(DEGA)差异表达。年龄依赖性的表达是区域特异性的,在腹外侧前额叶皮层和海马中分别表达的DEGA数量最高和最低。大多数大脑区域的大多数纤毛dega都会随着年龄的增长而表现出上调。编码纤毛基底体成分的转录本构成了大多数纤毛degas,相邻的脑皮质表现出很大的重叠成对的cilia degas。α /β-微管蛋白和SNAP-25表达在与年龄相关的神经发育和神经退行性疾病中的失调。最引人注目的是,特定的α /β -tubulin亚基(TUBA1A,TUBB2A和TUBB2B)和SNAP -25分别在几乎所有大脑区域的年龄范围内分别显示出最高的下调和上调率。我们的结果支持整个生命周期中纤毛结构和功能成分的高动力学在脑回路的正常生理学中的作用。此外,他们提出了纤毛信号传导在与年龄相关的精神病/神经系统疾病的病理生理机制中的关键作用。
发展神经元必须满足核心分子,细胞和时间要求,以确保突触的正确形成,从而导致功能电路。但是,由于神经元类别和功能的多样性,目前尚不清楚所有神经元是否使用相同的组织机制形成突触连接并实现功能和形态成熟。此外,尚不清楚神经元是否以一个共同的目标结合并包含相同的感觉电路在相似的时间标准上发展并使用相同的分子方法来确保形成正确数量的突触。为了开始回答这些问题,我们利用了果蝇触角(AL),这是一种模型嗅觉电路,具有显着的遗传获取和突触级别的分辨率。使用活性区域的组织特异性遗传标记,我们对整个发育和成年期性别的多种神经元进行了突触形式的定量分析。我们发现嗅觉受体神经元(ORNS),投影神经元(PNS)和局部神经元(LNS)都有突触发育,加法和细化的独特时间课程,表明每个类别都遵循一个独特的发展计划。这增加了这些类别可能对突触形成的分子要求也有明显的可能性。我们在每种神经元亚类型中遗传改变了神经元活性,并根据所检查的神经元类观察到对突触数的不同影响。在ORN,PN和LN中沉默的神经元活性受损的突触发育受损,但仅在ORN中才能增强神经元活性会影响突触的形成。ORNS和LNS与主激酶GSK-3 B的活性相似,突触发育类似,表明神经元活性和GSK-3 B激酶活性在公共途径中。ORN也证明了与GSK-3 B功能丧失的突触发育受损,这表明在发育中具有额外的无活动作用。最终,我们的结果表明,在所有神经元类别中,突触发育的要求并不统一,在其发育时间范围和分子需求中都存在相当多的多样性。这些发现提供了对突触发育机制的新见解,并为确定其潜在病因的未来工作奠定了基础。
一、昆虫形态学 昆虫体壁结构、构造和形态;口器、触角及其类型和功能;翅膀:构造和形态、脉络、翅膀连接装置和飞行机制;足:构造和形态。 胚胎后发育。昆虫目中未成熟阶段的类型,卵、若虫/幼虫和蛹的形态,未成熟阶段对于害虫管理的意义。 二、昆虫解剖学和生理学 外皮生理学、蜕皮、角质层化学、几丁质的生物合成;生长、激素控制、变态和休眠期;信息素的分泌、传递、感知和接收。昆虫消化、循环、呼吸、排泄、繁殖、分泌(外分泌腺和内分泌腺)和神经冲动传递的生理学和机制。昆虫营养的重要性——维生素、蛋白质、氨基酸、碳水化合物、脂质、矿物质和其他食物成分的作用;细胞外和细胞内微生物及其在生理学中的作用;人工饲料。III. 昆虫分类学 昆虫目和其中所含的具有经济价值的科的区别性状、一般生物学、习性和栖息地。弹尾目、原尾目、双尾目。昆虫纲:无翅亚纲——古颌目、缨尾目。亚纲:有翅亚纲,古翅目——蜻蜓目和蜉蝣目。门:新翅目:亚门:直翅目和蜉蝣目(=小翅目:蜉蝣目、蜉蝣目、等翅目、螳螂目、蝼蛄目、革翅目、直翅目、竹节虫目、螳螂目、茧蜂目、蟠翅目),亚门:半翅目(=副翅目):伪翅目、虱目、缨翅目和半翅目。昆虫目及其所含重要经济科的鉴别特征、一般生物学、习性和栖息地(续)。新翅目亚门,脉翅目组-鞘翅目:捻翅目、大翅目、尖翅目、脉翅目和鞘翅目,全翅目组长翅目、蚤目、双翅目、毛翅目、鳞翅目,膜翅目组:膜翅目。IV. 昆虫生态学丰度的基本概念-模型与现实世界。种群增长基本模型-指数与逻辑模型。离散与连续增长模型。概念
摘要:FUT8 是一种必需的 α -1,6-岩藻糖基转移酶,可使 N-糖链最内层的 GlcNAc 发生岩藻糖基化,这一过程称为核心岩藻糖基化。在体外,FUT8 表现出对双触角复合 N-糖寡糖 (G0) 的底物偏好,但 N-糖链所附着的底层蛋白质/肽的作用仍不清楚。在这里,我们用一系列 N-糖寡糖、N-糖肽和 Asn 连接的寡糖探索了 FUT8 酶。我们发现底层肽在少甘露糖(低甘露糖)和高甘露糖 N-糖链的岩藻糖基化中发挥作用,但对复合型 N-糖链不起作用。使用饱和转移差异 (STD) NMR 光谱,我们证明 FUT8 可识别 G0 N-糖链的所有糖单元和大多数氨基酸残基 (Asn-X-Thr),这些残基可作为寡糖基转移酶 (OST) 的识别序列。在存在 GDP 的情况下观察到最大的 STD 信号,这表明 FUT8 必须先与 GDP-β-L-岩藻糖 (GDP-Fuc) 结合才能最佳地识别 N-糖链。我们利用 CHO 细胞的糖基化能力基因工程来评估 FUT8 在具有一组特征明确的治疗性 N-糖蛋白的细胞中对高甘露糖和复合型 N-糖链的核心岩藻糖基化。这证实了核心岩藻糖基化主要发生在复合型 N-糖链上,尽管显然只发生在选定的糖基位点上。消除细胞中复合型糖基化能力(KO mgat1)表明,当转化为高甘露糖时,具有复合型 N-糖的糖基位点会失去核心岩藻糖基化。然而有趣的是,对于在有效获取四天线 N-糖方面并不常见的促红细胞生成素,在高甘露糖 N-糖上,三个 N-糖基化位点中有两个获得了岩藻糖基化。对几种蛋白质晶体结构的 N-糖基化位点的检查表明,核心岩藻糖基化主要受 N-糖的可及性和性质的影响,而不是受底层肽序列的性质的影响。这些数据进一步阐明了细胞体外和体内不同的 FUT8 受体底物特异性,揭示了促进核心岩藻糖基化的不同机制。关键词:FUT8、核心岩藻糖基化、N-糖基化、STD NMR、酶动力学、高甘露糖N-聚糖、复合N-聚糖、寡甘露糖型N-聚糖■ 引言