具有高复杂度、多维度和高非线性的特点。一个性能良好的预测框架应该能够处理异常值、缺失值或噪声数据 [13]。此外,一些研究需要复杂的预处理步骤,这是预测性能和计算效率之间的权衡,需要仔细权衡。此外,大多数当前模型缺乏通用性和自动化。它们仅适用于一架或几架航班、飞机类型或出发/到达程序。如果问题是 30
但是,这种细节的水平是以增加计算资源和仿真时间为代价的。最简化的几何形状是最短的计算时间。同时,准确性也有所不同。目标是找到一个简化的3D几何模型,该模型在准确性和计算效率之间达到平衡,从而可以更快地模拟,同时仍捕获重要的热电池效应。为了评估和比较这些模型,分析并在不同的仿真方法中分析并比较了关键性能指标,例如温度分布,电流分布和细胞电压。
本次会议征求的论文范围反映了多维引擎建模领域的真正多学科性质。该会话涵盖了多维引擎建模所涉及的模型和工具的开发和应用的进步。这包括化学动力学,燃烧和喷雾建模,湍流,传热,网格产生以及针对提高计算效率的方法。使用多维建模的论文,以更深入地了解与湍流传输,瞬态现象和化学反应相关的过程,还鼓励了两相流。
本文探讨了在CKKS加密方案中改善排名,顺序统计和分类算法的方法,重点是近似近似差异函数,例如符号函数。完全同态加密(FHE)通过直接对加密数据启用计算来确保数据隐私,但其高计算复杂性带来了显着的挑战。为了应对这些挑战,这项研究分析了两种关键近似技术的准确性和计算效率之间的平衡:Tchebyche和复合的minimax近似算法。我们的实验结果表明,复合最小值多项式优于使用Tchebyche近似值在内存使用和计算效率中创建的多项式,使其更适合于高性能效率。为了提高其针对近似误差的鲁棒性,本文还提出了一种修订算法,用于确定矢量的(arg)min和(arg)max,该算法将比较函数的用法替换为最大或最小函数的使用。我们的发现表明,在确定向量中的最小值时,使用最大或最小函数而不是比较函数可改善稳健性与近似误差。但是,计算Argmin时相反,因为稳健性降低。这些结果有助于开发CKKS加密方案的更健壮和有效的隐私算法,并具有潜在的应用程序,并具有安全的云计算,加密的机器学习和具有隐私意识的数据分析。
使用这种三层体系结构,摄政量平衡了计算效率和齿状成熟。内存类型和处理流的分离,再加上集成层的协调函数,创建了一个系统,可以反映人类认知体系结构,同时利用传统LLM的优势。这种方法不仅提高了我们对人工意识的理解,而且还为开发复杂的自主EMS提供了一个实用的框架,可以无缝整合快速,直觉的响应和谨慎的,谨慎的,谨慎的,审议的推理。
摘要:本研究文章介绍了吠陀数学技术的算法分析,重点是古代印度数学算法的计算效率和优化潜力。从古典吠陀文本和现代数学分析中绘制,研究研究了关键的吠陀经(格言)和子苏特拉群岛,以评估其算法复杂性,计算优势以及在当代计算范式中的应用。这项研究有助于更深入地了解吠陀数学的算法基础及其在数字计算,人工智能和算法优化中的相关性。
摘要:本研究比较了在财务数据分析中预测时间序列的不同机器学习模型。使用包括Arima,LSTM和GRU在内的模型来预测股票价格变动。我们衡量每个模型在各种数据集中的准确性和计算效率,并讨论其在财务预测环境中的优势和劣势。调查结果表明,深度学习模型在捕获传统方法的复杂时间模式方面显示出显着改善。关键字:时间序列预测,机器学习,Arima,LSTM,财务分析。A.简介
摘要 — 向可持续能源系统的过渡凸显了微电网中可再生能源高效定型的迫切需求。特别是,设计光伏 (PV) 和电池系统以满足住宅负荷是一项挑战,因为需要在成本、可靠性和环境影响之间进行权衡。虽然之前的研究已经采用了动态规划和启发式技术来确定微电网的大小,但这些方法往往无法平衡计算效率和准确性。在这项工作中,我们提出了 BOOST,即电池-太阳能序数优化定型技术,这是一种用于优化微电网中 PV 和电池组件定型的新颖框架。序数优化能够以计算效率评估潜在设计,同时通过对解决方案进行稳健的排序来保持准确性。为了确定系统在任何给定时间的最佳运行,我们引入了一种混合整数线性规划 (MILP) 方法,该方法比常用的动态规划方法成本更低。我们的数值实验表明,所提出的框架可确定最佳设计,实现低至 8.84 ¢/kWh 的平准化能源成本 (LCOE),凸显了其在经济高效的微电网设计中的潜力。我们的工作意义重大:BOOST 提供了一种可扩展且准确的方法,可将可再生能源整合到住宅微电网中,同时实现经济和环境目标。索引术语 — 微电网、序数优化、混合整数线性规划、动态规划
计算模型提供了评估和预测物理系统健康和性能的基本定量工具。但是,由于其时间密集型的性质,高实现模型很少用于实时操作或大型优化循环。提高预后计算效率的一种常见方法是采用表面模型。这样的模型可以显着减少计算时间,以获得一些准确的损失。在这种情况下,提出了动态模式分解(DMD)的使用,以对锂离子(Li-ion)电池电量进行替代模型。dmd,但是尚未应用于PHM域,在PHM域中,非线性行为的远面预测对于传播断层或剩余有用的使用寿命至关重要。对于锂离子电池健康管理,DMD的标准应用仅使用可观察到的兴趣量无法捕获实验室测试中展示的电池的非线性排放。Koopman理论提供了一种机制,可以通过将非线性状态变量扩展到系统表示中,以在DMD框架中以高维线性模型进行高维线性模型进行交易。通过这种方式,DMD允许根据Koopman运算符的维度提供可配置的模拟精度。为了进行电池健康管理,我们使用了更高的物理模型的隐藏状态增强了可观察到的变量,以构建DMD代理。与高实现模型相比,替代物提高了计算效率,仅损失准确性,并实现了长期prog-
关键字:神经普通微分方程,Wasserstein生成的广告网络,序列到序列网络本报告调查了神经通用差分方程(NODE)在机器学习中的应用,重点介绍其在Wasserstein生成的对抗性网络(WGANS)(WGANS)(WGANS)和序列到序列到序列到序列 - 序列到序列(seq2seqsssssssssssssss)的集成。我们探索了解决ODE的各种方法,并在计算效率和准确性方面进行了比较。我们的研究采用了JAX框架和差异方程求解器库的Diffrax来实施和评估这些方法。我们使用FréchetInception距离(FID)度量和SEQ2SEQ模型使用BLEU分数对WGAN进行基准测试。我们的分析涵盖了不同的伴随,自适应公差,网络体系结构中的求解器位置以及标准化技术的影响。对于WGAN,我们发现求解器的选择及其实现并没有显着影响FID得分,但确实会影响计算时间。在SEQ2SEQ模型中,我们观察到,增加网络的宽度会始终提高BLEU分数,并且选择伴随方法和适应性公差可以显着影响性能和效率。我们的结果表明,ODE求解器和相关参数的最佳选择取决于特定的机器学习任务以及准确性和计算效率之间所需的权衡。这项研究通过为不同的应用程序和计算约束来优化这些模型,从而为基于节点的机器学习的不断增长贡献。