最近,量子化学计算与机器学习的结合在加速新材料发现方面表现出了巨大的潜力。虽然这种混合方法与传统方法相比消耗的资源和时间更少,但它仍然面临着根本性的挑战。这些挑战包括训练数据集的大小和质量限制,以及使用离散优化技术有效探索大型化学空间的困难。
由于集成光子技术的最新进展,线性光学是实现量子计算协议的一种有前途的替代方案。在这种情况下,通常考虑基于量子比特的量子电路,然而,光子系统自然也允许 d 元,即基于量子数位器的算法。这项工作研究了由 d > 2 光学模式中单个光子的可能光子数状态定义的量子数位器。我们展示了如何使用线性光学和光子数解析探测器构建局部最优非确定性多量子数位器门,并探索在 ad 元优化问题中使用量子数位器簇状态。我们发现,与具有相似计算能力的量子比特簇状态相比,量子数位器簇状态需要更少的光学模式,并且由更少数量的纠缠光子编码。我们通过将我们的量子数位器方案应用于 k 着色问题来说明其优势。
b'given x,y \ xe2 \ x88 \ x88 {0,1} n,设置不相交在于确定某些索引i \ xe2 \ x88 \ x88 \ x88 [n]是否x i = y i = 1。我们研究了在分布式计算方案中计算此功能的问题,在该方案中,在长度路径的两个末端将输入X和Y提供给处理器。该路径的每个顶点都有一个量子处理器,可以通过每回合交换O(log n)Qubits来与其每个邻居进行通信。我们对计算设置不相交所需的回合数感兴趣,而恒定概率远离1/2。我们称此问题\ xe2 \ x80 \ x9cset脱节在行\ xe2 \ x80 \ x9d上。集合脱节,以证明在计算模型中计算任意网络的直径的量子分布式复杂性。但是,当处理器在路径的中间顶点上使用的局部内存受到严重限制时,它们只能提供下限。更确切地说,仅当每个中间处理器的本地内存由O(log n)量子位组成时,它们的边界才适用。在这项工作中,我们证明了E \ xe2 \ x84 \ xa6 3 \ xe2 \ x88 \ x9a'
b'given x,y \ xe2 \ x88 \ x88 {0,1} n,设置不相交在于确定某些索引i \ xe2 \ x88 \ x88 \ x88 [n]是否x i = y i = 1。我们研究了在分布式计算方案中计算此功能的问题,在该方案中,在长度路径的两个末端将输入X和Y提供给处理器。该路径的每个顶点都有一个量子处理器,可以通过每回合交换O(log n)Qubits来与其每个邻居进行通信。我们对计算设置不相交所需的回合数感兴趣,而恒定概率远离1/2。我们称此问题\ xe2 \ x80 \ x9cset脱节在行\ xe2 \ x80 \ x9d上。集合脱节,以证明在计算模型中计算任意网络的直径的量子分布式复杂性。但是,当处理器在路径的中间顶点上使用的局部内存受到严重限制时,它们只能提供下限。更确切地说,仅当每个中间处理器的本地内存由O(log n)量子位组成时,它们的边界才适用。在这项工作中,我们证明了E \ xe2 \ x84 \ xa6 3 \ xe2 \ x88 \ x9a'