计算机断层扫描 (CT) 成像具有广泛的诊断应用,是许多临床适应症的成像黄金标准。然而,与其他方法相比,CT 成像会使患者暴露于更高剂量的辐射。它会增加所有患者的癌症风险,尤其是那些定期接受筛查的高风险类别患者,例如儿科、肥胖或肿瘤患者。虽然存在低剂量和无剂量成像技术和模式,但通常必须在患者剂量暴露、临床效用和成本之间做出妥协。在 CT 中,诊断图像质量、临床效用和辐射剂量暴露之间存在直接相关性。低剂量程序会产生更多噪声图像,这会影响临床效用、放射科医生的工作效率和患者护理。相反,随着剂量的增加,图像质量往往会提高,使细微的病变更加明显——这最终有利于放射科医生的诊断信心。可以根据患者和程序要求优化 CT 成像协议以调整剂量,但这个过程复杂而繁琐,导致工作流程效率低下和运营成本增加。此外,旧型号的 CT 扫描仪需要更高的剂量才能产生清晰的图像。然而,由于相关的资本成本高昂,升级这些设备往往遥不可及。因此,旧设备通常仅限于常规病例,导致工作量平衡效率低下,高风险患者的等待时间增加。那么,医疗服务提供者如何在预算紧张的情况下平衡高质量、精确成像的需求,以及降低患者辐射暴露风险的需求呢?最近,基于人工智能的新型深度学习重建 (DLR) 和后处理技术已经面世。这些方法可以以最低可达到的剂量持续改善所有患者和所有程序的诊断图像质量——远远超出了当前重建技术所能达到的范围。这为成像组织优化 CT 成像程序提供了巨大的潜力。2. CT 成像的连锁影响
公司 : 商号 地址 : Computer Solutions B.V .................. :Takkebijsters 17 G , 4817BL Breda : 09 -06-1989 .. ...................................... 成立日期 该私人公司已公司运营时间:1990 年 11 月 15 日 业务描述:硬件、软件及用品的进口、开发和销售,一切都考虑到了最广泛的含义...............................此外,创立、收购…………参与、合作和管理其他公司……以及为其融资(或完成),也通过提供其他公司的安全保障............ ............................................... ..雇员: 8
1。___________________是计算机的大脑。2。我们使用___________________键入计算机。3。_________帮助我们连接到互联网。4。计算机是可以处理信息的___________________机器。5。___________________是我们看到输出的屏幕。6。___________________用于指向并单击屏幕。7。我们可以使用计算机___________________图片和图纸。8。___________________是计算机的主要部分。9。我们可以在计算机上收听___________________。10。___________________是计算机上简短而有趣的程序。11。键盘可帮助您将___________________提供给计算机。12。___________________ _看起来像电视屏幕。13。计算机帮助我们获取___________________信息。14。___________________是计算机屏幕上的一张小图。15。我们可以使用计算机与我们的朋友和家人一起____________________。
图 1. BCI 系统的一般框图 ................................................................................................ 7 图 2. 人脑及其组成部分 .............................................................................................. 14 图 3. 大脑的半球和功能 .............................................................................................. 14 图 4. 脑叶的位置 ............................................................................................................ 15 图 5. 神经元 ............................................................................................................. 16 图 6. Na+ 和 K+ 离子 ...................................................................................................... 17 图 7. EEG 信号捕获 ............................................................................................. 19 图 8. 级联方法 ............................................................................................................. 30 图 9. BCI 块系统 ............................................................................................................. 30 图 10. MindWave 耳机及其组成部分 ................................................................................ 31 图 11. 创建和配置 C# 项目 ............................................................................................. 35 图 12. C# 项目库 ............................................................................................................. 36 图 13. 导入NativeThinkgear64.cs 类 ...................................................................... 36 图 14. 代码截图 .............................................................................................. 38 图 15. 级别 0 .............................................................................................................. 42 图 16. 级别 1 .............................................................................................................. 43 图 17. 连接表单 ............................................................................................................. 45 图 18. 训练表单 ............................................................................................................. 46 图 19. 控制器表单 ...................................................................................................... 47 图 20. 电路图 ............................................................................................................. 48 图 21. 电路板布局 ............................................................................................................. 49 图 22. 外部设备操作 ............................................................................................................. 54 图 23. 控制器电路和连接 ................................................................................................ 55 图形索引
在多发性硬化症 (MS) 中,脑损伤程度、解剖位置、形状和变化是帮助医学研究人员和临床医生了解疾病时间模式的重要方面。纵向 MS 数据的交互式可视化可以支持旨在探索性分析病变和健康组织拓扑的研究。现有的可视化包括条形图和汇总指标,例如绝对数字和体积,以总结病变随时间的变化轨迹,以及体积变化等汇总指标。这些技术可以很好地用于具有双时间点比较的数据集。对于频繁的后续扫描,如果没有合适的可视化方法,很难从多模态数据中理解模式。作为一种解决方案,我们提出了一个可视化应用程序,其中我们通过适用于大型时间序列数据的交互式可视化来展示病变探索工具。除了各种体积和时间探索设施外,我们还包括一个交互式堆叠面积图,其中包含其他集成功能,可以比较病变特征,例如强度或体积变化。我们从自动病变跟踪中获取纵向可视化的输入数据。对于有大量随访的病例,我们的可视化设计可以提供有用的摘要信息,同时允许医学研究人员和临床医生研究较低粒度的特征。我们通过与领域专家的评估展示了我们的可视化在模拟数据集上的实用性。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。