教师名称:和Bharath Hariharan Wei-Chiu MA教师电子邮件:bh497@cornell.edu和wm347@cornell.edu教职员工办公室时间:TBA(请访问课程网站(以获取最新信息的最新信息)课程员工和课程员工办公室时间:此课程将有约20个教学辅助者。次和办公时间的场所将在课程网站上的第一周发布。先决条件/主页:线性代数知识(推荐),编程和概率/统计时间和位置:星期一/星期三/星期五1:25-2:15 PM在Baker Laboratory在Baker Laboratory 200。课程描述本课程将引入计算机视觉的核心问题,并根据图像形成的几何形状和物理学讨论经典方法,并使用深度学习介绍现代技术。主题包括立体和3D重建,图像分割,对象识别,图像和补丁的特征表示以及卷积网络。课程目标/学生学习成果在参加本课程后,学生将能够:
深度学习是一种自动学习方法,它基于大量示例的学习模式。 div>是一种复杂问题的特别有趣的方法,为之,数据(经验)广泛可用,但是制定分析解决方案是不可行的。 div>在本课程中,我们将探讨深度智能和计算机视觉的基本概念。 div>我们将通过理论会议和实践示例来展示如何根据任务(对象检测,实例分割,对象之间的关系预测)和数据模式(图像,视频,3D)创建和训练深层智力模型。 div>该课程将以一些高级问题的介绍以及有关最近趋势的讨论进行介绍。 div>
含义,自然和范围 - 有效口头交流的原则 - 有效语音的技术 - 口头交流的媒体(面对面 - 面向 - 脸对话 - 电视会议 - 新闻发布会 - 示范 - 无线电记录 - 录音 - 录音 - 录音 - 谣言 - 谣言 - 示威与戏剧化 - 戏剧性 - 戏剧性 - 公共地址系统 - 公共地址系统 - 葡萄藤讨论 - 小组讨论 - 口头报告 - 口头电视电视)。聆听的艺术 - 良好聆听的原则。
摘要。这项工作旨在强调与在高等教育机构中创建“智能”微电子计算机科学课程相关的问题。创建的“智能”计算机科学教室是一个完全自动化的教育环境,其运行模式为“标准”、“自动”、“自动省电”。 “Samrt”机柜可以通过智能手机、PC 和遥控器进行控制。机柜配备了基于 ArduinoUNO、MEGA 和 ESP8266-12E WiFi 模块的各种传感器、指示器和电子零件。内置“智能”办公室传感器和指示器的测量用于显示有关办公室和教室微气候状态的信息,用于演示演示和实验室工作。智能机柜专为 Iformatics 设计,由三个模块组成:“信息”、“执行”和“演示”,由 ATMEL 微控制器控制。演示模块旨在快速轻松地连接无焊板的各种传感器和组件。Arduino 开放式编程平台。计算机科学教室中的智能传感器可以监控教室内外的环境(温度、湿度、压力、光照水平、空气中的二氧化碳和其他气体水平);并远程控制外围设备:电视、投影仪、灯、电源插座、窗帘。所有三个模块都连接到无线局域网。基于每个模块的无线电通信的“星型”拓扑。系统的主要组件是具有互联网接入、设备、技术和软件工具的执行模块。技术教育机构教育系统的概述解决了以下问题:在高等教育机构中创建“智能”计算机科学教室。
实习飞行软件、计算机视觉和人工智能瑞士苏黎世公司:Daedalean 是一家总部位于苏黎世的初创公司,由前谷歌和 SpaceX 工程师创立,他们希望在未来十年内彻底改变城市航空旅行。我们结合计算机视觉、深度学习和机器人技术,为飞机开发最高级别的自主性(5 级),特别是您可能在媒体上看到的电动垂直起降飞机。如果您加入我们的实习,您将有机会与经验丰富的工程师一起工作,他们来自 CERN、NVIDIA、伦敦帝国理工学院或……自治系统实验室本身。您将构建塑造我们未来的尖端技术。最重要的是,我们还提供在瑞士阿尔卑斯山试飞期间加入我们飞行员的机会。项目:不同团队提供机会。我们想更多地了解您,以及如何让您的实习成为双方宝贵的经历。告诉我们你一直在做什么,以及你想在我们的团队中从事什么工作。它与深度学习有关吗?状态估计?运动规划?计算机视觉?或者别的什么?向我们展示你的热情所在。如果我们可以在你想从事的领域提供指导和有趣的机会,我们将一起敲定细节。资格: 强大的动手 C++ 证明解决问题的能力 如何申请: 将您的简历/履历发送至 careers@daedalean.ai 。请告诉我们一些关于您自己的信息,为什么您认为自己适合我们以及为什么我们适合您。
1。MA101BS矩阵和微积分3 1 0 4 2。CH103BS工程化学3 1 0 4 3。 CS103ES编程解决问题3 0 0 3 4。 EE101ES基本电气工程2 0 0 2 5。 ME101ES计算机辅助工程图形1 0 4 3 6。 CS106ES计算机科学与工程元素0 0 2 1 7。 CH106BS工程化学实验室0 0 2 1 8。 CS107ES编程解决问题实验室0 0 2 1 9。 EE102ES基本电气工程实验室0 0 2 1感应计划CH103BS工程化学3 1 0 4 3。CS103ES编程解决问题3 0 0 3 4。EE101ES基本电气工程2 0 0 2 5。ME101ES计算机辅助工程图形1 0 4 3 6。CS106ES计算机科学与工程元素0 0 2 1 7。CH106BS工程化学实验室0 0 2 1 8。 CS107ES编程解决问题实验室0 0 2 1 9。 EE102ES基本电气工程实验室0 0 2 1感应计划CH106BS工程化学实验室0 0 2 1 8。CS107ES编程解决问题实验室0 0 2 1 9。EE102ES基本电气工程实验室0 0 2 1感应计划
将人造模式添加到QR码之类的对象中可以简化诸如对象跟踪,机器人导航和传达信息(例如标签或网站链接)之类的任务。但是,这些模式需要物理应用,它们会改变对象的外观。相反,投影模式可以暂时更改对象的外观,协助3D扫描和检索对象纹理和阴影等任务。但是,投影模式会阻碍动态任务,例如对象跟踪,因为它们不会“粘在对象的表面上”。还是他们?本文介绍了一种新颖的方法,结合了预测和持久的物理模式的优势。我们的系统使用激光束(精神类似于激光雷达)进行热模式,热摄像机观察和轨道。这种热功能可以追踪纹理不佳的物体,其跟踪对标准摄像机的跟踪极具挑战性,同时不影响对象的外观或物理特性。为了在现有视觉框架中使用这些热模式,我们训练网络以逆转热扩散的效果,并在不同的热框架之间移动不一致的模式点。我们在动态视觉任务上进行了原型并测试了这种方法,例如运动,光流和观察无纹理的无纹理对象的结构。
摘要。研究相关性是由在难以到达条件下改善对象大小的测量过程的需要决定的。在现代工业环境中,高测量精度对于确保安全和最大化生产过程的效率至关重要,对该主题的研究在快速技术发展和提高生产质量要求的背景下是相关的。该研究旨在评估使用现代计算机视觉方法在困难的技术条件下测量和重建对象的可能性,例如水 - 水功率反应堆的封闭。该研究采用了3D摄影测量方法,包括立体声和多视图立体声的深度,以及运动方法的结构。研究确定,现代计算机视觉方法,特别是机器学习方法,可以成功地用于在难以到达的条件下测量和重建对象。研究表明,在理想条件下,从测量设备到对象的测量精度可以达到接近1 mm的值。同时,与立体声方法的深度相比,多视图立体法揭示了误差的空间分布更大的均匀性。在实践中,在真实照片的条件下,多视图立体声方法最需要准确地确定相机的位置。由于其对摄像机确切坐标的需求较低,立体声方法的深度显示出更好的结果,显示出较小的测量误差。这项研究强调了使用所提出的方法区分
