NREL 还可以使用可扩展集成基础设施规划 (SIIP) 建模框架分析大规模协调电动汽车充电对电网的影响。SIIP 模拟可以确定所需的电力系统基础设施,以支持大规模电动汽车的采用并为充电基础设施决策提供信息。该方法可以用于研究其他需求响应型能源代理(例如建筑物、电池存储和微电网),以便为更集成、更智能的电网设计提供信息。与我们合作
在本政策摘要中,我们讨论了如何获得基于AI技术的计算资源在实现英国公众AI福利方面成为关键的关键。,人们非常希望AI可以通过改革和提供新服务并改善响应能力和个性化来帮助支持英国的公共服务。但是,如果没有可靠地访问足够和安全的计算资源来训练和运行使用的模型,就无法实现这些目标。大型公司计算机提供商目前为英国提供大多数计算资源,尽管英国政府不应也不应目的与这些提供商竞争,但必须提供足够的计算来支持其自己的公共部门,在必须处理必须处理私人和敏感数据的情况下,这一点很重要。更重要的是,公共委员会将有助于将人工智能纳入公共服务,对日益关键的资源进行更加无缝和安全的整合,并有机会吸引公民参与决策,以确保正在开发AI解决方案,以解决对公众最重要的社会挑战的开发。
。CC-BY-ND 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2022 年 12 月 29 日发布了此版本。;https://doi.org/10.1101/2022.12.29.522254 doi:bioRxiv 预印本
人工智能是一种力量倍增器,它通过交互式可视化与人类合作,为实验设计创建人工智能指南,连接模拟和实验,并将高端计算引入研究过程,从而提高核心研究、开发、演示和部署投资的生产力。由于道德是人工智能发展的关键组成部分,NREL 的人工智能发展原则包括人类的能动性和监督;科学和技术的稳健性;适用性和可持续性;透明度和可解释性;公平、公正和正义。当我们负责任地进行研究和使用技术时——解决偏见的可能性;评估和严格测试有效性并加强模型的安全性;等等——我们可以满怀信心地继续前进。
量子步行已被视为通用量子计算的原始。通过使用描述单个粒子离散时间量子步行所需的操作,我们证明了在两个Qubit System上实现通用门的实现。这个想法是要收获单个量子位的有效希尔伯特空间及其在位置空间叠加中演变的位置空间,以实现多Qubit的状态和量子门上的通用量子集。与基于电路的计算模型相比,在拟议的量子步行模型中,以工程任意状态形式实现了许多非平凡的门。我们还将讨论模型的可扩展性和一些命题,以实现较大的量子系统中使用较少数量的Qubits。
摘要 — 量子计算机的规模不断扩大,现在的设计决策试图从这些机器中榨取更多的计算能力。本着这种精神,我们设计了一种方法,通过调整量子纠错中使用的协议来实现“近似量子纠错 (AQEC)”,从而提高近期量子计算机的计算能力。通过近似成熟的纠错机制,我们可以增加近期机器的计算量(量子比特 × 门,或“简单量子体积 (SQV)”)。我们设计的关键是一个快速硬件解码器,它可以快速近似解码检测到的错误综合征。具体来说,我们展示了一个概念验证,即通过在超导单通量量子 (SFQ) 逻辑技术中设计和实现一种新算法,可以在近期量子系统中在线完成近似错误解码。这避免了隐藏在所有离线解码方案中的关键解码积压,这会导致程序中 T 门数量的空闲时间呈指数增长 [58]。
遗传密码赋予大脑神经网络与生俱来的计算能力。但它是如何实现的却一直不得而知。实验数据表明,基因组通过成对连接概率对大量遗传上不同类型的神经元编码了新皮层回路的架构。我们为这种间接编码方式建立了一个数学模型,即一个概率骨架,并表明它足以将一套要求相当高的计算能力编入神经网络。这些计算能力无需学习即可产生,但很可能为后续的快速学习提供强大的平台。它们通过统计层面的架构特征而不是突触权重嵌入神经网络。因此,它们在低维参数空间中指定,从而提供增强的鲁棒性和泛化能力,正如先前的研究所预测的那样。
遗传编码的结构赋予大脑的神经网络具有先天的计算能力,可在出生后立即实现异味分类和基本运动控制。还可以推测,新皮层微电路的刻板印象层流组织提供了基本的计算功能,随后可以在其中构建。但是,它已经确定了自然如何实现这一目标。从人工神经网络中获得的见解无助于解决此问题,因为他们的计算能力是由于学习而导致的。我们表明,对不同类型的神经元功能之间的连接概率进行了基因编码的控制,用于将大量计算能力编程到神经网络中。这种见解还提供了一种通过巧妙的初始化来增强人工神经网络和神经形态硬件的计算和学习方法的方法。
• 副总理兼国家研究基金会主席王瑞杰宣布拨款 2.7 亿新元,用于建造新加坡的下一代超级计算机并开发高性能计算 (HPC) 能力,以支持国家研究计划。 • 该消息是在 ASPIRE 1 2A 和 2A+ 系统的正式发布会上宣布的,这两个系统是由新加坡国家超级计算中心 (NSCC) 管理的研究超级计算机。 • 超级计算机是人工智能、气候科学、量子计算、生物医药、先进制造、材料科学、基因组学和建筑环境等研究领域的关键资源。新加坡,2024 年 10 月 25 日——新加坡将投入 2.7 亿新元开发其国家超级计算基础设施,并加强新加坡国家超级计算中心 (NSCC) 支持本地研究的能力。新加坡副总理兼国家研究基金会 (NRF) 主席王瑞杰在 ASPIRE 2A 和 2A+ 系统正式启动仪式上宣布了这一消息,这两个系统都是由新加坡国家研究基金会管理的研究超级计算机。NRF 提供的这笔拨款将用于资助新加坡国家研究基金会下一代超级计算机的开发,以满足对高性能计算 (HPC) 资源日益增长的需求并释放新的研究机会。继 2A+ 之后的下一台超级计算机预计将于 2025 年下半年投入运营,它将探索传统超级计算机和量子计算机之间更大的协同作用和集成。这种结合对于解决未来研究挑战日益复杂和数据密集型的问题至关重要。除了基础设施建设之外,这笔拨款还将支持新加坡 HPC 生态系统中的人才和技能发展。新加坡国家研究基金会将扩大其计划,为本地研究人员和科学家提供增强的能力,重点是开发先进算法、优化大规模 HPC 和 AI 项目以及提高研究效率。这些努力将使各个领域取得更快、更有影响力的突破。NSCC 将与当地大学、研究机构和 HPC 公司合作,指导和培训人才,以创建新的 HPC 工具、应用程序和软件。即将推出的青年研究员种子计划专门通过提供 HPC 资源来培养早期职业研究人员。还将为中小企业和初创企业留出资源,以加速它们对商业应用和创新的研究,帮助它们提高市场竞争优势。此外,这笔拨款将促进与日本和芬兰等国际超级计算中心的合作。这将使新加坡能够在共同感兴趣的领域利用全球专业知识、知识和战略,进一步增强本地 HPC 能力并推动技能发展。“在 NSCC,我们的价值主张超越了我们提供的裸机硬件和技术。除了我们的超级计算机,我们还专注于三个关键领域:扩大我们的 HPC 容量和多样性、加强组织和运营卓越性以及培养人才并赋能我们的用户实现更大的突破,”新加坡国家超级计算中心 (NSCC) 首席执行官 Terence Hung 博士说道。