患者预科用根据决策过程中的临床相关性所选择的关键因素(对于MDS:年龄:IPSS-R/IPSS-M)所选择的关键因素。7,8目的是通过使用不同的移植策略计算质量调整后的平均生存时间来确定最佳策略,并在每个患者中进行比较。出于这个原因,多层建模框架用于考虑治疗前和治疗后的疾病状态,并根据治疗性治疗和治疗后结果调整可能的混杂因素。这个多态疾病模型描述了该疾病的自然史,并估算了感兴趣的协变量的影响。最后,实施了基于微观仿真的决策模型,以确定与最高生存时间相关的过程的最佳时机。
变更历史 版本 发布日期 变更 1.0 2021 年 10 月 26 日 初始版本。 2.0 2021 年 12 月 21 日 第 2.2 节:更正与 ETS 指令的链接——最新合并版本生效; 第 5.3 节:澄清位于英国的项目的资格; 第 7 节:关于“创新程度”最低门槛的规范; 第 8 节:更正“温室气体减排”标准的“计算质量、净碳去除、其他温室气体减排”子标准下考虑的内容; 关于成本效率公式的补充解释; 解释附件 D 中的系统就绪概念;在附件 E 3.0 中增加 CCS 类别的可能部门 2022 年 1 月 22 日第 7 节和第 9 节:澄清项目开发援助提案的条件第 10.7 节:澄清要共享的知识附件 F:澄清可交付成果、里程碑、验证方法和传播水平。
摘要 — 量子计算是一种很有前途的解决计算难题的范例。IBM、Rigetti 和 D-Wave 等多家公司使用基于云的平台提供量子计算机,该平台具有几个有趣的特性,即:(i) 云端存在具有不同数量量子比特和耦合图的量子硬件,可提供不同的计算能力;(ii) 套件中存在具有相同耦合图的多个硬件;(iii) 具有更多量子比特的较大硬件的耦合图可以适应许多较小硬件的耦合图;(iv) 每个硬件的质量都不同;(v) 用户无法验证从量子硬件获得的结果的来源。换句话说,用户依赖云提供商的调度程序来分配请求的硬件;(vi) 云端的量子程序队列通常很长,并且可以最大化吞吐量,这是降低成本和帮助科学界进行探索的关键。上述因素促使了一种新的威胁模型,该模型具有以下可能性:(a)未来,第三方不太可信的量子计算机可能会分配质量较差的硬件,以节省成本或满足其虚假宣传的量子比特或量子硬件规格;(b)工作负载调度算法可能存在错误或恶意代码段,这些错误或恶意代码段将试图以分配给质量较差的硬件为代价来最大化吞吐量。可信提供商也有可能存在此类错误;(c)可信云供应商中的恶意员工可能会试图通过篡改调度算法或重新路由程序来降低用户计算质量,从而破坏供应商的声誉;(d)恶意员工可以通过将程序重定向到他们具有完全控制权的第三方量子硬件来窃取信息。如果分配的硬件质量较差,用户将遭受质量较差的结果或更长的收敛时间。我们提出了两种量子物理不可克隆函数 (QuPUF) 来解决此问题 - 一种基于叠加,另一种基于退相干。我们在真实量子硬件上的实验表明
摘要:光谱计算机断层扫描标志着医学成像的革命性进步,提供了组织表征和诊断准确性的显着改善。使用双能X射线技术,该方法根据其原子数和电子密度区分材料。频谱成像可从多个能级中获取数据,从而更详细地描绘组织结构,并增强对各种病理状况的识别和理解。与传统成像不同的是依赖于单个能级的传统成像,该方法产生的图像具有多样的对比度,从而可以区分标准扫描中可能看起来相似的组织。本评论探讨了有关光谱计算机断层扫描的发表研究和研究的各种集合,利用了同行评审的期刊和学术教科书,专门研究双能量成像系统,探测器创新和临床应用。获得了所获得的见解,以提供有关此成像技术的基本原理,技术进步和临床实用性的全面概述。强大的搜索策略和明确定义的纳入标准可确保选择高质量的相关资源,以支持本综述中得出的结论。本文旨在对光谱计算机断层扫描的基本原理,技术创新和临床应用进行全面概述。这种能力对于检测和分析各种病理问题(包括肿瘤,血管异常和退化性疾病)特别有价值。2。检测器技术的最新进步显着提高了光谱成像系统的灵敏度和分辨率。这些改进会导致更清晰,更精确的图像,并减少噪声。高级图像重建算法的结合具有进一步的图像质量,从而更好地可视化复杂的解剖学特征,对于准确的诊断和有效的治疗计划至关重要。此外,增强的软件功能现在可以详细介绍组织特性的定量分析,例如衰减系数,有助于评估组织组成并区分良性和恶性生长。光谱计算机断层扫描中的进步代表了医学成像中的关键演变,从而显着提高了诊断评估的准确性和细节。利用双能系统和创新技术,可以实现先进的组织表征,促进知情的临床决策。其广泛的临床应用突出了其在各种专业中的重要性,从而提高了有效诊断和管理各种疾病的能力。随着研究和技术的继续发展,它将在实现更好的健康成果中发挥越来越重要的作用。关键字:计算机断层扫描,光谱成像,组织表征,双能X射线系统1。引言自从五十年前作为一种非侵入性诊断方法首次亮相以来,计算机断层扫描(CT)经历了重大发展。现代CT研究的关键领域是光谱成像,它利用多色X射线的能量信息来增强组织表征。虽然Spectral CT源于早期CT技术,但由于技术的改进,其临床采用率在过去的十年中已大大增长,这使其实际上更可行(Krauss,B。,2015年)。ct数是由X射线的衰减确定的,X射线受材料的质量密度和有效原子数的影响。光谱CT使用数学技术分别计算质量密度和有效原子数,从而收集多个能级的数据。双能计算机断层扫描(DECT)的出现具有显着高级的CT技术,可以解决组织表征的先前局限性,而新的光子计数检测系统为多能成像的进一步改善提供了潜力(Gutjahr,R。,R。,2016年)。本文的目的是对光谱计算机断层扫描的核心原理,技术进步和临床应用进行深入探索。方法本综述研究了一系列关于光谱计算机断层扫描的已发表的研究和研究,这些研究来自同行评审的期刊和学术教科书,这些期刊和学术教科书着眼于双能CT系统,探测器技术,