与地面数据中心相比,轨道数据中心具有多项基本优势,尤其是在规模达到 GW 级时。通过使用廉价的太阳能,可以显著节省运营成本,而不受下文讨论的地面太阳能发电场的限制。轨道数据中心可以利用太空中的被动辐射冷却来直接实现低冷却剂温度,从而降低冷却成本。或许最重要的是,它们可以几乎无限地扩展,而不受地球上面临的物理或许可限制,使用模块化快速部署。所有这些都将对环境产生净效益——欧盟委员会最近的一项研究得出结论,轨道数据中心将显著减少电网电力产生的温室气体排放,并消除用于冷却的淡水使用。3
败血症被定义为威胁生命的器官功能障碍综合征,原因是宿主对感染的失调反应引起的,其特征是系统性炎症对感染的反应。使用抗生素,流体复苏和器官支持疗法对败血症患者的预后有限,其发病率并没有降低,这引起了医学上更多的关注。败血症仍然是最衰弱和昂贵的疾病之一。现在认为,败血症死亡率的主要原因之一是破坏免疫稳态。免疫疗法正在彻底改变对疾病的治疗,其中失调的免疫反应起着重要作用。这种“受过训练的免疫力”是针对感染的有力防御,无论细菌,真菌或病毒的类型如何,都归因于以下发现,即先天免疫细胞通过代谢和表观遗传重编程具有免疫记忆。在这里,我们审查了败血症中先天免疫细胞的免疫疗法,受过训练的免疫力以及受过训练的免疫和败血症之间的关系。
决策在日常生活中起着至关重要的作用,需要评估与不同选择相关的概率和风险的短期和长期结果。损害的决策可以被定义为做出不明智或冒险选择的趋势,并且在几种精神病疾病中是一个核心问题,包括药物使用和赌博障碍(1-3),注意力定义多活障碍(4)和情感障碍(5,6)(5,6)。对决策过程及其参与精神病疾病的研究有所增加,并且已经开发了对决策不同方面的几项测试。爱荷华州赌博任务(IGT)最初是为了评估腹侧前额叶皮层损害的患者的决策受损(7)。此后,它已成为一种广泛使用的工具,用于评估临床和非临床样本中不确定性和风险下的人类决策(8)。向参与者提供了四个牌牌,这些卡具有不同的胜利或亏损可能性。参与者未知,卡片在其货币收益/损失意外事件上有所不同,两个甲板是有利的,并且在长期的货币利润方面不利(7)。几项操作任务可用于对不同认知过程和潜在神经生物学的临床前研究,包括延迟折现,五个选择的串行反应时间任务(5-CSRTT)和不同版本的啮齿动物赌博任务。重要的是,从翻译价值中,这些任务具有人类类似物(9-11)。此外,培训可能会偏向实验结果。任务的共同点,有时是作为警告,是教动物在进行任何实验操作之前进行任务所需的深入培训。这使他们既耗时又耗资货币昂贵(12)。老鼠赌博任务(RGT)基于IGT,其中包括与赢得蔗糖颗粒或接受惩罚超时的不同概率相关的四个选择(13)。要建立最有利的策略,老鼠需要更喜欢与立即奖励和短暂超时相关的低风险选项,并避免与较大的即时奖励和更长的惩罚超时相关的选项。已经表明,大鼠在RGT中制定了与IGT中人类相似的策略(14、15),并且大多数大鼠在最有利的选择方面学习并保持稳定的选择(13、15-20)。然而,基于此类策略存在很大的个体差异,动物已分为三个不同的策略组:(i)战略群体更喜欢最有利的选择,(ii)更喜欢安全选择的安全群体,该群体更安全的选择,该选择最安全的选择,可以使一个不可或缺的时间和(iii)具有更高的选择组,以及(iii),以及(iii)偏爱的选择,即20岁,而不利地选择了两种选择。大鼠需要进行自由选择的RGT需要多长时间的训练,但是尚不清楚以不同的决策策略的大鼠组之间的任务获取和训练日数是否有所不同。此发现暗示以前已经证明,在RGT中具有不同策略的大鼠在与奖励和决策过程有关的区域中显示出大脑连通性的差异(20)。
UAV图像采集和深度学习技术已被广泛用于水文监测中,以满足数据量需求不断提高和质量的增加。但是,手动参数培训需要反复试验成本(T&E),现有的自动培训适应简单的数据集和网络结构,这在非结构化环境中是低实用性的,例如干山谷环境(DTV)。因此,这项研究合并了转移学习(MTPI,最大转移电位指数法)和RL(MTSA强化学习,多汤普森采样算法)在数据集自动启动和网络中自动培训,以降低人类的经验和T&E。首先,为了最大程度地提高迭代速度并最大程度地减少数据集消耗,使用改进的MTPI方法得出了最佳的迭代条件(MTPI条件),这表明随后的迭代仅需要2.30%的数据集和6.31%的时间成本。然后,在MTPI条件(MTSA-MTPI)中提高了MTSA至自动提高数据集,结果显示准确性(人为误差)提高了16.0%,标准误差降低了20.9%(T&E成本)。最后,MTPI-MTSA用于四个自动训练的网络(例如FCN,SEG-NET,U-NET和SEG-RES-NET 50),并表明最佳的SEG-RES-NET 50获得了95.2%WPA(准确性)和90.9%的WIOU。本研究为复杂的植被信息收集提供了一种有效的自动培训方法,该方法提供了减少深度学习的手动干预的参考。
扩散模型由于其众多优点已成为一种流行的图像生成和重建方法。然而,大多数基于扩散的逆问题解决方法仅处理二维图像,即使是最近发表的三维方法也没有充分利用三维分布先验。为了解决这个问题,我们提出了一种新方法,使用两个垂直的预训练二维扩散模型来解决三维逆问题。通过将三维数据分布建模为不同方向切片的二维分布的乘积,我们的方法有效地解决了维数灾难。我们的实验结果表明,我们的方法对于三维医学图像重建任务非常有效,包括 MRI Z 轴超分辨率、压缩感知 MRI 和稀疏视图 CT。我们的方法可以生成适合医疗应用的高质量体素体积。代码可在 https://github.com/hyn2028/tpdm 获得
扩散模型在图像生成中表现出了前所未有的ca。然而,它们从原始训练集中纳入并扩大了数据偏差(例如性别,年龄),从而限制了产生的IMEG的多样性。在本文中,我们在基于图像集的重新函数的指导下,使用增强学习(RL)提出了一种面向多样性的细调方法(RL)。具体而言,所提出的奖励函数(表示为多样性奖励),利用一组生成的信息来评估当前生成分配W.R.T.的覆盖范围。参考分布,由一组无偏见的图像表示。建立在分布差异估计的概率方法的基础上,差异奖励可以有效地用一小部分图像来测量相对分布差距。我们进一步将扩散过程作为多步决策问题(MDP),并通过最大化多样性奖励来应用策略梯度方法来微调扩散模型。在放样后选择任务上验证了奖励,其中根据多样性奖励值选择了最多样化的图像的子集。我们还展示了我们的RL微调框架的有效性,可以通过不同类型的扩散模型(包括班级条件模型和文本条件模型,例如stablediffusion)增强图像生成的多样性。
拥有资格和经验的有兴趣的候选人可能会将填写申请表的硬或软拷贝(根据附件 - i)发送给T. Sivakumar教授,T。Sivakumar教授,团队协调员,RUSA项目,应用科学和技术系,AC Tech Campus,AC Tech Campus,Anna University,Anna University,Anna University,Chennai-25。电子邮件:rusapo12.au@gmail.com以及有证明的教育资格复印件,出生证明日期,任何其他经验证书,标记表,24.02.2025
抽象的语法校正校正(GEC)工具,由先进的生成人工智能(AI)提供动力,在用户输入中有效地纠正了语言的不准确性。但是,它们通常在提供基本的自然语言解释方面缺乏,这些解释是学习语言并获得对语法规则的更深入的理解。在低资源语言(例如孟加拉语)中对这些工具的探索有限。在这样的语言中,革命错误说明(GEE)系统不仅应正确句子,而且还应提供错误的解释。这种综合方法可以帮助语言学习者寻求提高能力。我们的工作介绍了一个现实世界中的多域数据集,该数据集来自孟加拉语扬声器,具有不同的义务水平和语言复杂性。此数据集可作为GEE系统的评估基准标记,允许他们使用上下文信息来生成有意义的解释和高质量的更正。Various generative pre-trained large language models (LLMs), in- cluding GPT-4 Turbo, GPT-3.5 Turbo, Text-davinci-003, Text-babbage- 001, Text-curie-001, Text-ada-001, Llama-2-7b, Llama-2-13b, and Llama-2-70b, are assessed against human experts for performance comparison.我们的研究强调了自动部署孟加拉人GEE的当前最新生成预培训的LLM的局限性。主张进行人干预,我们的发现提议合并手动检查以解决语法错误并提高反馈质量。这种方法提出了一种更合适的策略,以重新确定孟加拉语的GEC工具,并阐明了语言学习的教育方面。
法尼·克劳丹元帅在黎巴嫩代尔基法和纳库拉之间的运输物流护航任务中,对途中发生的事故表示祝福。 Malgré 获得了黎巴嫩联合国军国际部队快速医疗奖(最终),克劳丹元帅的医疗团队。
涉及先天免疫细胞的炎症失调,特别是单核细胞/巨噬细胞谱系,是导致Duchenne肌肉营养不良症(DMD)发病机理的关键因素。受过训练的免疫力是一种抗感染的进化古老的保护机制,其中表观遗传和代谢改变赋予了先天免疫细胞对各种刺激的非特殊性过度反应性。在DMD动物模型(MDX小鼠)中的最新工作表明,巨噬细胞表现出训练有素的免疫力的基本特征,包括存在先天免疫系统“记忆”。通过骨髓移植对训练的表型对健康的非疾病小鼠的表观遗传变化和耐用的可传播反映了后者。机械上,建议通过受损的肌肉受损的因素在骨髓水平上诱导了4个调节的,带有样本的先天免疫的记忆样能力,从而夸大了促进性和抗流量的基因的上调。在这里,我们提出了一个概念框架,以参与训练有素的免疫力参与DMD发病机理及其作为新的治疗靶点的潜力。
