图 1. 饼图显示了训练集凸包之外的测试样本的百分比。对于 7% 的测试样本,没有一个训练样本具有相同的性别、种族、原籍国、婚姻状况和工作类别。因此,任何模型也必须沿着这些分类方向进行推断。对于 45% 的测试样本,推断发生在受教育年限、年龄、资本和每周工作小时数等维度上。对于剩余的 47% 的测试样本,模型可以在训练样本之间进行插值。该统计数据表明,对于该数据集的测试样本,推断是丰富且重要的。
(b)真实图像数据分布图4:通过U-NET的学习分布的相变。在(a)中,x轴是固有维度上的训练样本数量,而在(b)中,这是训练样本的总数。y轴是GL分数。我们使用(a)k = 2,n = 48和d k从3到6和(b)真实图像数据集CIFAR-10,celeba,ffhq和afhq的MOLRG分布产生的数据样本训练扩散模型。u-net记住训练数据时,GL分数很低,并且在学习基础分布时高。
3. 使用 K 最近邻 (KNN) 方法进行分析 K 最近邻 (KNN) 是一种通过考虑现有属性和训练样本来对新对象进行分类的算法。分类不需要使用模型,而仅基于记忆。在该算法中,将在查询点中搜索若干个𝐾个最近的训练点,并根据这些𝐾点中的大多数进行分类。 KNN 采用基于邻域的分类方法,通过计算查询实例到训练样本的最短距离来确定 KNN。 KNN算法对于预测新物体的分类非常简单而且有效。使用KNN方法的步骤如下:
•组成概括:给定基本组成部分及其组合的一些演示,概括为新型组合。•长度概括:比训练样本更长的测试样本。•LLM无法实现长度的概括,没有适当的及时设计
摘要 —基于脑电图 (EEG) 的运动想象 (MI) 分类是非侵入式脑机接口 (BCI) 系统中广泛使用的技术。由于 EEG 记录在不同受试者之间具有异质性并且标记数据不足,因此设计一个使用有限的标记样本独立于受试者执行 MI 的分类器是可取的。为了克服这些限制,我们提出了一种新颖的独立于受试者的半监督深度架构 (SSDA)。所提出的 SSDA 由两部分组成:无监督和监督元素。训练集包含来自多个受试者的标记和未标记数据样本。首先,无监督部分,称为列时空自动编码器 (CST-AE),通过最大化原始数据和重建数据之间的相似性从所有训练样本中提取潜在特征。采用维度缩放方法来降低表示的维数,同时保留其可辨别性。其次,监督部分使用在无监督部分获得的潜在特征,基于标记的训练样本学习分类器。此外,我们在监督部分使用中心损失来最小化类中每个点到其中心的嵌入空间距离。该模型以端到端的方式优化网络的两个部分。在训练阶段模型未见过的测试对象上评估了所提出的 SSDA 的性能。为了评估性能,我们使用了两个基于 EEG 的基准 MI 任务数据集。结果表明,SSDA 优于最先进的方法,并且少量的标记训练样本足以实现强大的分类性能。
我们提出了一种基于检索增强生成 (RAG) 的训练算法来获得最相似的训练样本。获得的训练样本被用作参考,以执行基于上下文学习的大型语言模型 (LLM) 微调。我们使用提出的方法生成标题并从非结构化文本中提取数值。通过专门设计用于捕获数字的扩展标记语言 (XML) 标签,模型可以意识到非结构化文本中数字的存在。非结构化文本的标题经过预处理以包装数字,然后呈现给模型。许多数学运算也被作为参考传递,以涵盖思路链 (COT) 方法。因此,模型可以计算传递给数学运算的最终值。我们将数字验证作为后处理步骤,以验证模型计算的数值是否正确。生成的标题中的数字自动验证帮助模型在所涉及的方法中在人工评估中取得最佳结果。
我们在 2019 年预测分析大赛 (PAC) 中名列第三,通过 T1 加权 MRI 脑部图像预测年龄,平均绝对误差 (MAE) 达到 3.33 岁。我们的方法结合了七种算法,当特征数量超过观测值数量时,这些算法可以生成预测,特别是两个版本的最佳线性无偏预测器 (BLUP)、支持向量机 (SVM)、两个浅层卷积神经网络 (CNN) 以及著名的 ResNet 和 Inception V1。集成学习是通过在训练样本的保留子集中的线性回归估计权重而得出的。我们进一步评估并确定了可能影响预测准确性的因素:算法的选择、集成学习以及用作输入/MRI 图像处理的特征。我们的预测误差与年龄相关,年龄较大的参与者的绝对误差更大,这表明需要增加该子群的训练样本。我们的研究结果可用于指导研究人员建立健康个体的年龄预测指标,可用于研究和临床,作为疾病状况的非特异性预测指标。
我们在 2019 年预测分析大赛 (PAC) 中名列第三,通过 T1 加权 MRI 脑部图像预测年龄,平均绝对误差 (MAE) 达到 3.33 岁。我们的方法结合了七种算法,当特征数量超过观测值数量时,这些算法可以生成预测,特别是两个版本的最佳线性无偏预测器 (BLUP)、支持向量机 (SVM)、两个浅层卷积神经网络 (CNN) 以及著名的 ResNet 和 Inception V1。集成学习是通过在训练样本的保留子集中的线性回归估计权重而得出的。我们进一步评估并确定了可能影响预测准确性的因素:算法的选择、集成学习以及用作输入/MRI 图像处理的特征。我们的预测误差与年龄相关,年龄较大的参与者的绝对误差更大,这表明需要增加该子群的训练样本。我们的研究结果可用于指导研究人员建立健康个体的年龄预测指标,可用于研究和临床,作为疾病状况的非特异性预测指标。
分布式学习是机器学习 (ML) 模型训练中中心学习的一种有前途的替代方案,它解决了医疗保健中的数据共享问题。先前研究探索了用于基于医学图像的疾病分类的联邦学习 (FL) 或旅行模型 (TM) 设置,这些研究通常依赖于具有有限数量中心或模拟人工中心的大型数据库,这使人们对其在现实世界的适用性产生了怀疑。这项研究使用从世界各地 83 个不同的真实中心获取的数据(主要贡献小型训练样本)开发并评估了一种用于帕金森病分类的卷积神经网络 (CNN)。我们的方法特别利用了 TM 设置,该设置已被证明在数据可用性有限的场景中是有效的,但从未用于基于图像的疾病分类。我们的研究结果表明,即使在具有可变数据分布的复杂现实场景中,TM 也可有效训练 CNN 模型。经过足够的训练周期后,TM 训练的 CNN 的性能与集中训练的 CNN 相当或略胜一筹(AUROC 分别为 83% 和 80%)。我们的研究首次强调了 TM 在 3D 医学图像分类中的有效性,尤其是在训练样本有限和异构分布式数据的情况下。这些见解适用于使用来自小型或远程医疗中心的数据训练 ML 模型的情况,以及病例稀少的罕见疾病。这种方法简单易用,可广泛应用于许多深度学习任务,增强其在各种环境和医疗机构中的临床实用性。