摘要:本研究提出了一种新的梦境记录方法,该方法结合了非侵入式脑机接口 (BMI)、思维输入软件和生成式 AI 辅助多模态软件。该方法旨在将 REM 睡眠期间的意识过程升华到半意识状态,并产生用于思维输入的信号。我们概述了一个两阶段的过程:首先,使用生成式 AI 开发多模态软件来补充文本流并生成多媒体内容;其次,采用基于摩尔斯电码的打字方式来简化信号要求并提高打字速度。我们通过建议一种涉及植入 BMI 的用户的控制系统来优化非侵入式信号,从而应对非侵入式 EEG 的挑战。文献综述重点介绍了 BMI 打字、意识过程升华以及生成式 AI 在基于文本提示的思维输入方面的潜力方面的最新进展。
为了增强轨道几何维护计划并降低基础设施成本,准确预测由镇流器和子级别的循环负载引起的累积永久性轨道变形(沉降)对于铁路基础设施管理者至关重要。本文提出了一种新的方法,可以基于一项用于评估短期和长期轨道性能的混合方法研究的广泛参数研究,以降低计算成本来预测长期结算。将各种机器学习技术进行比较并采用用于开发预测模型,这些模型使用归档的压载轨道演示者的测量结果进行了验证。使用多个指标评估每个模型的性能和准确性,并进行了敏感性分析以识别有影响力的解释变量。值得注意的是,开发的随机森林模型与现场测量的定居数据表现出了良好的一致性。这种方法弥合了差距是数值模拟和经验数据,从而对永久轨道变形有了改进的整体理解。该方法具有在铁路轨道维护和更新管理的计算决策支持系统中实施的潜力。
&appcc op No.32 of 2022 :(根据第86(l)(l)(b)条和第86(l)(l)(l)(l)(l)(f),《 2003年电力法》,用于裁定2014年4月2日的第44.12.2014条,日期为04.12.2014的纠纷,日期为04.12. 2014 Andhra Pradesh的Southern Power Distribution Company有限公司以此处的请愿人以及延迟的付款附加费和开放信用证的开票来支付未偿还的会费)。
a 瑞典皇家理工学院,应用物理系,阿尔巴诺瓦大学中心,斯德哥尔摩,SE-114 21,瑞典 b 中子散射和成像实验室,保罗谢勒研究所,CH-5232,Villigen PSI,瑞士 c 纳米科学中心,尼尔斯玻尔研究所,哥本哈根大学,Nørre All e 59,DK-2100,哥本哈根 O,丹麦 d 都灵理工大学应用科学与技术系,Corso Duca Degli Abruzzi 24 10129,都灵,意大利 e 维也纳科技大学固体物理研究所,Wiedner Hauptstraße 8 e 10,1040,维也纳,奥地利 f 瑞典皇家理工学院 PDC 高性能计算中心,SE-100 44,斯德哥尔摩,瑞典 g Nordita,瑞典皇家理工学院和斯德哥尔摩大学,Hannes Alfv ens v € ag 12,SE-106 91,斯德哥尔摩,瑞典 h 东京大学固体物理研究所中子科学实验室,柏,千叶 277-8581,日本 i 东京大学跨尺度量子科学研究所,东京 113-0033,日本 j 高能加速器研究机构材料结构科学研究所,茨城 305-0801,日本 k 牛津大学无机化学实验室,牛津 OX1 3QR,英国 l 印度理工学院物理系,坎普尔 208016,印度 m 塔塔基础研究所 DCMPMS,孟买 400005,印度 n 查尔姆斯理工大学物理系,SE-412,哥德堡,瑞典
电动汽车中的抽象电池安全性是一项全面的工程努力,需要在每个阶段进行一致的考虑,包括电池材料,电池组设计和电池管理系统(BMS)。本综述着重于锂离子电池的安全管理策略和实际应用。电池安全的管理主要包括充电和放电安全,高压安全性和热安全性。在其中,充电和排放安全管理旨在防止电池损坏或由过度充电或出院造成的安全事件。高压安全管理涉及检测绝缘断层,过电流和其他潜在风险,以防止电气危害。热安全管理确保单个电池电池,模块和电池组保持最佳的工作温度范围和均匀的温度分布,从而防止热失控。
逐步淘汰航运业的化石燃料对于减少温室气体排放至关重要。基于可再生能源的合成燃料是可持续海运业的一个有前途的选择,可再生甲醇是最广泛考虑的能源载体之一。然而,可再生甲醇的供应仍然有限,而且与传统燃料相关的成本明显高于传统燃料,这也是因为燃料合成必须依赖二氧化碳作为资源。通过使用船上碳捕获,可以避免燃烧过程中二氧化碳的释放,这种闭式循环减少了对碳源的需求。本文通过分析使用内燃机和相连的燃烧前和燃烧后碳捕获技术的整体船舶能源系统来研究这种情况。通过建立一个混合整数优化框架来优化船舶推进系统的设计和运行,研究了这些技术对完全可再生能源系统的技术经济性能的影响。所选案例研究的推进需求包括在波罗的海运营的渡轮的典型运行概况。将捕获情况与仅基于可再生甲醇的系统进行比较,可以发现封闭式碳循环系统具有显著的成本优势。基线情景的年成本降低了近 20%,燃烧后情况下的总捕获率为 90%,燃烧前情况下的总捕获率为 40% 左右。广泛的敏感性分析表明,这些成本优势在各种技术和经济边界条件下都具有稳健性。在燃烧前情况下,工艺热需求减少与发动机热供应增加相结合可能会使捕获率超过 90%。结果表明,将可再生燃料与船上碳捕获相结合可以为成本效益高、可持续的航运创造机会。
黑色磷纳米片(BPNSS)由于其独特的物理化学特性而在石墨烯以外的2D材料中是新星。[38–47]在黑色磷(BP)晶体中,不同的BP层通过弱的范德华相互作用堆叠在一起,并且磷原子通过在层中通过SP 3杂交共价键相互联系,在每个phos-Phors-Phorus Atom上留下了一对单独的电子。[48] BPNSS沿扶手椅方向显示出重复的蜂窝结构,并沿着Zigzag方向进行双层布置,从而在BPNS中产生强大的面内各向异性电子和光学特性。[49–51] BPNSS显示了从0.3 eV(bulk bp)到2.0 eV(单层)的厚度依赖性直接带盖的广泛范围。它们的光学响应由激子主导,在几百meV范围内表现出结合能。[52,53]更重要的是,单层BP具有1000 cm 2 v-1 s-1的电荷载体迁移率,而在野外效应晶体管中,良好的ON/OFF ON/OFF比率为10 3-10 4。[54]由于这些令人兴奋的特性,BPNS在光催化,生物医学,能源存储和转换以及电子和光电设备中显示了潜在的应用。[55–61]但是,在环境条件下,BPNS的稳定性较差限制了其实际应用,这主要是因为在氧气和/或水存在下,磷原子化学降解为氧化磷。在不同的钝化策略中,通过共价或非共价方法(方案1)构建异质结构可以帮助获得具有各种架构和功能的基于BPN的异质结构。[62–66]到目前为止,已经证明了不同的方法,例如化学官能化[67-72]和金属氧化物或离子载体质层涂层[73-75],作为改善BPNS环境稳定性的有效方法。基于BPN的异质结构可以提供BPNS的大面积钝化,结合属性
肠球菌包含一组乳酸菌(LAB),具有巨大的用作食品发酵微生物的潜力。不幸的是,由于发生致病性和多药抗性菌株,肠球菌受到了很多负重的关注。在这项研究中,我们使用基因组学来选择44个研究的肠球菌分离株中的安全糖果。 对四十四菌株的基因组进行了充分测序,并评估了毒力和抗生素耐药基因的存在。 属于乳酸肠肠球菌,肠球菌,杜兰肠球菌和泰国肠球菌的19个分离株被认为免受基因组分析的安全性。 评估的二级代谢产物基因簇评估了细菌素的存在,并发现十二个候选物可以分泌抗微生物化合物,可有效针对从奶酪和金黄色葡萄球菌分离出的listeria monocytogenes。 生理表征显示,在dustrial潜力中有19个;所有菌株在42°C时生长良好,酸化1.5小时的速度比乳腺乳酸乳酸菌乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳突乳酸乳杆菌(Lactococcoccus)乳注。 我们得出的结论是,所检查的肠球菌中有很大一部分是安全的,并且可以用作具有固有生物保护能力的优秀食品发酵微生物。在这项研究中,我们使用基因组学来选择44个研究的肠球菌分离株中的安全糖果。对四十四菌株的基因组进行了充分测序,并评估了毒力和抗生素耐药基因的存在。属于乳酸肠肠球菌,肠球菌,杜兰肠球菌和泰国肠球菌的19个分离株被认为免受基因组分析的安全性。的二级代谢产物基因簇评估了细菌素的存在,并发现十二个候选物可以分泌抗微生物化合物,可有效针对从奶酪和金黄色葡萄球菌分离出的listeria monocytogenes。生理表征显示,在dustrial潜力中有19个;所有菌株在42°C时生长良好,酸化1.5小时的速度比乳腺乳酸乳酸菌乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳酸乳突乳酸乳杆菌(Lactococcoccus)乳注。我们得出的结论是,所检查的肠球菌中有很大一部分是安全的,并且可以用作具有固有生物保护能力的优秀食品发酵微生物。