本章和以下各章描述了金属和合金中第二相沉淀颗粒的晶体学。本章的重点放在分析其晶体结构,组成和晶体取向与基质之间的技术方面。在技术上嵌入固体基质中的细质沉淀物的表征在技术上很困难。来自矩阵的信号始终阻碍来自沉淀物的信号。尽管即使是最先进的特征技术仍然不完整,但要评估与沉淀物晶体相关的经典理论中涉及的假设的有效性变得有可能。例如,最近的实验研究表明,成核过程中其晶体结构的演变似乎与所谓的经典成核理论相矛盾,而大小和组成的波动。最近的研究还表明,它们与基质的晶体取向关系通常不同于与界面晶格不匹配相关的能量考虑因素预测的晶体取向。此外,发现与基质的晶体取向关系是控制降水硬化大小的因素,与基于连续弹性理论计算的常规Orowan的强化模型相反,而无需考虑结晶学。
NETL 的合金开发能力以 NETL 合金锭冶金术(熔炼)和热机械加工(锻造和轧制)为基础,这两项技术的规模在 DOE 综合设施和国内行业中独一无二。这项独特的能力使研究人员能够高效且经济地制作合金概念原型,并将其规模轻松转化为工业实践(介于实验室和生产规模之间)。这种制造能力,加上 NETL 在实际条件下进行计算材料设计和性能评估的能力,使 NETL 能够提供合金解决方案,从而实现先进的能源系统并支持美国工业部署新兴技术。NETL 的许多姊妹国家实验室(太平洋西北国家实验室、爱达荷国家实验室、洛斯阿拉莫斯国家实验室和橡树岭国家实验室)以及美国大大小小的企业都利用 NETL 的合金制造能力来制作先进合金概念的原型。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
添加剂制造(AM)为具有内部功能的复杂组件带来了重要的设计和制造机会,例如以前无法使用液体火箭发动机推力室。该技术可节省大量成本和计划减少,除了通过减轻重量和增加利润来优化新的绩效。特定于再生冷却的燃烧室和液体火箭发动机的喷嘴,添加剂制造具有形成复杂的内部冷却液通道和通道的关闭功能,可以包含具有单个操作的高压液体推进剂。使用激光粉床融合(L-PBF),大部分添加剂制造开发都集中在整体合金上,这些合金不允许对结构进行完全优化。国家航空航天局(NASA)完成了AM双金属L-PBF GRCOP-84铜合金燃烧室,具有AM Electron Beam Freeform Inconel 625结构夹克在低成本上级推进(LCUSP)项目下。正在开发一个名为“快速分析和制造推进技术”(RAMPT)的后续项目,以进一步扩展大型多合金推力室,同时将综合覆盖技术与大量储蓄机会相对。除了这些主要的制造开发外,分析建模工作还补充了过程开发,以模拟AM过程以减少构建失败和扭曲。RAMPT项目还在GRCOP-42的L-PBF之外,还为上述各种制造工艺的供应链介绍了供应链。RAMPT项目具有三个主要目标:1)推进吹粉的导向能量沉积(DED)以制造整体通道大型喷嘴,2)开发复合覆盖技术,以减少重量并为推力室内组件提供结构性能力,3)开发Bimetallic和多金属添加性添加性添加性产物和轴向物质的材料,以优化材料。本文将概述RAMPT项目,流程开发和硬件进展,迄今为止,材料和热火测试结果以及计划的未来发展。
增材制造,又称快速成型,已经彻底改变了聚合物材料部件的生产。增材制造技术的新发展为行业提供了使用各种金属合金、陶瓷和复合材料制造结构部件的能力。金属增材制造工艺的引入彻底改变了工业领域金属部件的生产,其中复杂的几何形状、有机形状、管状、空心设计和致密的晶格填充结构起着决定性的作用。然而,存在一些问题限制了金属增材制造的更广泛采用和利用。这些问题与缺乏设计和建模技能和增材制造软件、使用相同技术但不同机器获得的不同特性、难以完美模拟过程、对零件质量变化原因的理解不完全以及过程的可重复性有关。本期特刊旨在收集金属增材制造的材料供应、零件设计、工艺建模、工艺技术、后处理和应用领域的完整论文和评论。
选择有潜力应用于未来装甲的材料作为先进材料 ・陶瓷材料 与传统的无压烧结和热压方法相比,静态材料特性如弯曲强度、硬度等。关注脉冲电流压力(放电等离子体)烧结法,提高了静电性能! ・有色金属材料 密度约为黑色金属材料的1/5,比传统材料强度更高 高强度镁合金 低杨氏模量和高强度钛合金 钛合金
MYEBS WIIvBERT T,杂货店,肉类市场和面包店 314-316 W 21st,电话新 6269,中北 642,h 2251 N Meridian,电话中北 6255。Myers Wilbur W,包装工 224 E McCarty,b 2422 Brookside av. Myers Willa,瓷器画家,b 1942 College av. Myers Wm,煤炭 536 E Wabash,h 602 E Market。Myers Wm,扳道工,h 223 Miley av. Myers Wm,实验室,h 1904% College av. Myers Wm,slsmn,h 5802 Beechwood av. Myers Wm A,实验室,h 1922 Fountain。 Myers Wm D,sis mngr 22"l W 10th,h 3820 N Capitol av. Myers Wm E» lab,b 41 N Chester av. Myers Wm H,Insp,h 2323 College av. Myers Wm H,mach,h 2174 Gushing. Myers Wm H,saloon 1442 N Senate av. Myers Wm I,chfr,h 128 S Hawthorne la. Myers Wm J,blksmith,h 1018 S Sheffield av. Myers Wm W,assist cashr 1100 B 15th,hsw cor Keystone av and 46th,MYEBS & FENTON(David A Myers,Harry A Fenton),律师 1009-1012 Law Bldg,电话 New 212. Myers & Selgfried (Wert A Myers,Theodore Seigfried),车库 2156 College av. Mygrant Emory,实验室,r 628 E Miami。Myhan James H,实验室,h 514 Blake。£5§*Myles,另见 Miles。Myles Kate V,杂货店 3029 W Michigan,h
关于大脑记忆,最广为接受的观点认为,突触是记忆的存储点,记忆是通过突触的联想修改形成的。这一观点在概念和经验上受到了质疑。另一种观点认为,细胞体内的分子是记忆的存储点,记忆是通过对这些分子进行生化操作形成的。本文基于记忆的计算模型,综合了这两种观点。突触被认为是潜在原因的近似后验概率分布参数的存储点。细胞内分子被认为是生成模型参数的存储点。该模型规定了这两个组件如何作为学习和推理集成算法的一部分协同工作。
随着无数期刊论文,书籍和报纸文章重复的介绍,对人工智能(AI)的重新兴趣正在改变一切。这种“炒作”不仅是AI系统中实际进步的结果,还取决于那些最近试图探索AI可以通过过去十年合并的大量数据和计算资源来探索的大型科技公司的营销工作(请参阅Whittaker 2021)。同时,这些工业AI系统的销售是有可能解决当前面临人类社会面临的复杂挑战的潜力,关键学者越来越多地指出,它们会吸引新问题。,例如,AI Now Institute的联合创始人兼董事Meredith Whittaker成立于2017年,旨在研究AI的社会影响,最近警告: